Section 12.4: The Cross Product

The cross product $\overrightarrow{a \times b}$ of two vectors \vec{a} and \vec{b} is a vector, unlike the dot product, which is a scalar. We will see later that $\overrightarrow{a \times b}$ is useful because it is perpendicular to both \vec{a} and \vec{b}.

We can find $\overrightarrow{a \times b}$ in component form by using the fact that $\overrightarrow{a \times b}$ is perpendicular to both \vec{a} and \vec{b}, along with the vector distributive laws (see page 668-669 in text for proof).

$$
\overrightarrow{a \times b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

In order to make this expression for $\overrightarrow{a \times b}$ easier to remember, we will use the notation of determinates. A determinate of order 2 is defined by

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=a d-b c
$$

A determinate of order 3 is defined by

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

Thus, if we make the first row \mathbf{i}, \mathbf{j}, and \mathbf{k}, the second row \mathbf{a}, and the third row \mathbf{b},

$$
\begin{aligned}
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| & =\mathbf{i}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
\end{aligned}
$$

Example 1: Find the cross product of $\langle 1,1,3\rangle$ and $\langle-2,-1,-5\rangle$.
$\left|\begin{array}{ccc}i & j & k \\ 1 & 1 & 3 \\ -2 & -1 & -5\end{array}\right|$

Example 2: Find a unit vector perpendicular to both $\langle 1,2,1\rangle$ and $\langle 0,1,3\rangle$.

Example 3: Find a vector perpendicular to the plane through the points $P(2,3,5), Q(-1,3,4)$ and $R(3,0,6)$.

Theorem: If θ is the angle between \vec{a} and \vec{b}, then $|\overrightarrow{a \times b}|=|\vec{a}||\vec{b}| \sin \theta$.
Corollary: Two non zero vectors \vec{a} and \vec{b} are parallel if and only if $|\overrightarrow{a \times b}|=0$.
Example 4: Find the angle between the vectors $\vec{a}=2 \vec{i}+6 \vec{j}-4 \vec{k}$ and $\vec{b}=-3 \vec{i}-9 \vec{j}+6 \vec{k}$.

Note: we can always find θ using the formula $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.

Theorem: The length of the cross product $\vec{a} \times \vec{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

Example 5: Find the area of the triangle determined by the points $P(1,0,0), Q(0,2,0)$ and $R(0,0,3)$.

Example 6: Determine whether each expression is meaningful or meaningless (circle one). If so, state whether the expression is a vector or a scalar.
a.) $\mathbf{a} \cdot \mathbf{b}$
meaningful (vector or scalar)
meaningless
b.) $\mathbf{a} \times \mathbf{b}$
meaningful (vector or scalar)
meaningless
c.) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$
meaningful (vector or scalar)
meaningless
d.) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$
meaningful (vector or scalar)
meaningless
e.) $(\mathbf{a} \cdot \mathbf{b}) \times(\mathbf{c} \cdot \mathbf{d})$
meaningful (vector or scalar)
meaningless
f.) $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})$
g.) $\mathbf{a} \times(\mathbf{b} \cdot \mathbf{c})$
h.) $|\mathbf{a}|(\mathbf{b} \times \mathbf{c})$
meaningful (vector or scalar)
meaningless
meaningless
meaningful (vector or scalar)
b) $(\mathrm{b} \times \mathrm{c})$
meaningful (vector or scalar)
meaningless

