13.1 (Vector Functions/Space Curves) and 13.2 (Derivatives/Integrals of Vector Functions)

Definition: Let \overrightarrow{r} be a vector function whose range is a set of three-dimensional vectors. This means that for every number t in the domain of \overrightarrow{r} , there is a unique vector $\overrightarrow{r(t)} = \langle f(t), g(t), h(t) \rangle$. We use t as the independent variable because it represents time in most applications of vector functions.

Example 1: Find $\overrightarrow{r(e)}$ where $\overrightarrow{r(t)} = \langle \cos t, \sin t, \ln t \rangle$.

Definition: The limit of a vector function is defined by taking the limit of the component functions, that is if $\overrightarrow{r(t)} = \langle f(t), g(t), h(t) \rangle$, then $\lim_{t \to a} \overrightarrow{r(t)} = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$.

Example 2: Find $\lim_{t\to\infty} \left\langle \frac{1-e^{-3t}}{4t}, \arctan t, \ln \frac{3+2t}{5t-3} \right\rangle$.

Definition: If $\overrightarrow{r(t)} = \langle f(t), g(t), h(t) \rangle$, where f, g and h are differentiable functions, then $\overrightarrow{r'(t)} = \langle f'(t), g'(t), h'(t) \rangle$.

Theorem: Suppose \mathbf{u} and \mathbf{v} are differentiable functions, c is a scalar, and f is a real valued function. Then

1.
$$\frac{d}{dt} (\mathbf{u}(\mathbf{t}) + \mathbf{v}(\mathbf{t})) = \mathbf{u}'(t) + \mathbf{v}'(t)$$

2.
$$\frac{d}{dt} c \mathbf{u}(t) = c \mathbf{u}'(t)$$

3.
$$\frac{d}{dt} (\mathbf{u}(\mathbf{t}) \cdot \mathbf{v}(\mathbf{t})) = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$

4.
$$\frac{d}{dt} (\mathbf{u}(\mathbf{t}) \times \mathbf{v}(\mathbf{t})) = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

5.
$$\frac{d}{dt} \mathbf{u}(f(t)) = f'(t) \mathbf{u}'(t)$$

Example 3: Find the domain of both $\overrightarrow{r(t)}$ and $\overrightarrow{r'(t)}$ if $\overrightarrow{r(t)} = \left\langle t \cos t, \sqrt{\ln t}, \frac{t}{t-2} \right\rangle$.

Example 4: Find the **Unit Tangent Vector** (tangent vector of length one) to the curve $\overrightarrow{r(t)} = \langle e^{2t}, t, te^t \rangle$ at t = 0.

Example 5: Find parametric equations for the tangent line to the curve $x = 2\cos t$, $y = 2\sin t$, $z = 4\cos(2t)$ at the point $(\sqrt{3}, 1, 2)$.

Definition: If $\overrightarrow{r(t)} = \langle f(t), g(t), h(t) \rangle$, where f, g and h are integratible functions, then (i) $\int \overrightarrow{r(t)} dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle$ (ii) $\int_{a}^{b} \overrightarrow{r(t)} dt = \left\langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \right\rangle$

Example 6: Find $\int \left(t e^{3t} \mathbf{i} + t \ln t \mathbf{j} + t \cos(t^2) \mathbf{k} \right) dt$

Example 7: Find $\overrightarrow{r(t)}$ if $\overrightarrow{r'(t)} = \left\langle \sin t, e^{-2t}, \frac{1}{t^2 + 1} \right\rangle$ and $\overrightarrow{r(0)} = \langle 2, 1, -2 \rangle$.

Example 8: Evaluate $\int_0^1 \left(t^2 \mathbf{i} + t \mathbf{j} + \frac{1}{t+1} \mathbf{k} \right) dt$

Example 9: At what points does the curve $\overrightarrow{r(t)} = t\mathbf{i} + (2t - t^2)\mathbf{k}$ intersect the paraboloid $z = x^2 + y^2$?

Definition: The set C of all points (f(t), g(t), h(t)), where t varies over its domain, is called a space curve.

Example 10: Match the parametric equations with the graphs (labeled I-VI)

a. $x = t \cos t, y = t, z = t \sin t, t \ge 0$ b. $x = \cos t, y = \sin t, z = \frac{1}{1 + t^2}$ c. $x = t, y = \frac{1}{1 + t^2}, z = t^2$ d. $x = \cos t, y = \sin t, z = \cos(2t)$ e. $x = \cos 8t, y = \sin 8t, z = e^{0.8t}$ f. $x = \cos^2 t, y = \sin^2 t, z = t$

Example 10: At what point do the curves $\overrightarrow{r_1(t)} = \langle t, 1-t, 3+t^2 \rangle$ and $\overrightarrow{r_2(s)} = \langle 3-s, s-2, s^2 \rangle$ intersect? Find the angle of intersection correct to the nearest degree.