13.1 (Vector Functions/Space Curves) and 13.2 (Derivatives/Integrals of Vector Functions

Definition: Let \vec{r} be a vector function whose range is a set of three-dimensional vectors. This means that for every number t in the domain of \vec{r}, there is a unique vector $\overrightarrow{r(t)}=\langle f(t), g(t), h(t)\rangle$. We use t as the independent variable because it represents time in most applications of vector functions.
Example 1: Find $\overrightarrow{r(e)}$ where $\overrightarrow{r(t)}=\langle\cos t, \sin t, \ln t\rangle$.

Definition: The limit of a vector function is defined by taking the limit of the component functions, that is if $\overrightarrow{r(t)}=\langle f(t), g(t), h(t)\rangle$, then $\lim _{t \rightarrow a} \overrightarrow{r(t)}=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle$.
Example 2: Find $\lim _{t \rightarrow \infty}\left\langle\frac{1-e^{-3 t}}{4 t}, \arctan t, \ln \frac{3+2 t}{5 t-3}\right\rangle$.

Definition: If $\overrightarrow{r(t)}=\langle f(t), g(t), h(t)\rangle$, where f, g and h are differentiable functions, then
$\overrightarrow{r^{\prime}(t)}=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle$.
Theorem: Suppose \mathbf{u} and \mathbf{v} are differentiable functions, c is a scalar, and f is a real valued function. Then

1. $\frac{d}{d t}(\mathbf{u}(\mathbf{t})+\mathbf{v}(\mathbf{t}))=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
2. $\frac{d}{d t} c \mathbf{u}(t)=c \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}(\mathbf{u}(\mathbf{t}) \cdot \mathbf{v}(\mathbf{t}))=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
4. $\frac{d}{d t}(\mathbf{u}(\mathbf{t}) \times \mathbf{v}(\mathbf{t}))=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$
5. $\frac{d}{d t} \mathbf{u}(f(t))=f^{\prime}(t) \mathbf{u}^{\prime}(t)$

Example 3: Find the domain of both $\overrightarrow{r(t)}$ and $\overrightarrow{r^{\prime}(t)}$ if $\overrightarrow{r(t)}=\left\langle t \cos t, \sqrt{\ln t}, \frac{t}{t-2}\right\rangle$.

Example 4: Find the Unit Tangent Vector (tangent vector of length one) to the curve $\overrightarrow{r(t)}=\left\langle e^{2 t}, t, t e^{t}\right\rangle$ at $t=0$.

Example 5: Find parametric equations for the tangent line to the curve $x=2 \cos t, y=2 \sin t, z=4 \cos (2 t)$ at the point $(\sqrt{3}, 1,2)$.

Definition: If $\overrightarrow{r(t)}=\langle f(t), g(t), h(t)\rangle$, where f, g and h are integratible functions, then
(i) $\int \overrightarrow{r(t)} d t=\left\langle\int f(t) d t, \int g(t) d t, \int h(t) d t\right\rangle$
(ii) $\int_{a}^{b} \overrightarrow{r(t)} d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle$

Example 6: Find $\int\left(t e^{3 t} \mathbf{i}+t \ln t \mathbf{j}+t \cos \left(t^{2}\right) \mathbf{k}\right) d t$

Example 7: Find $\overrightarrow{r(t)}$ if $\overrightarrow{r^{\prime}(t)}=\left\langle\sin t, e^{-2 t}, \frac{1}{t^{2}+1}\right\rangle$ and $\overrightarrow{r(0)}=\langle 2,1,-2\rangle$.

Example 8: Evaluate $\int_{0}^{1}\left(t^{2} \mathbf{i}+t \mathbf{j}+\frac{1}{t+1} \mathbf{k}\right) d t$

Example 9: At what points does the curve $\overrightarrow{r(t)}=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+y^{2}$?

Definition: The set C of all points $(f(t), g(t), h(t))$, where t varies over its domain, is called a space curve.

Example 10: Match the parametric equations with the graphs (labeled I-VI)
a. $x=t \cos t, y=t, z=t \sin t, t \geq 0$
b. $x=\cos t, y=\sin t, z=\frac{1}{1+t^{2}}$
c. $x=t, y=\frac{1}{1+t^{2}}, z=t^{2}$
d. $x=\cos t, y=\sin t, z=\cos (2 t)$
e. $x=\cos 8 t, y=\sin 8 t, z=e^{0.8 t}$
f. $x=\cos ^{2} t, y=\sin ^{2} t, z=t$

I

v

IV

VI

Example 10: At what point do the curves $\overrightarrow{r_{1}(t)}=\left\langle t, 1-t, 3+t^{2}\right\rangle$ and $\overrightarrow{r_{2}(s)}=\left\langle 3-s, s-2, s^{2}\right\rangle$ intersect? Find the angle of intersection correct to the nearest degree.

