Section 13.4: Motion in Space: Velocity and Acceleration

Definition: Suppose a particle moves through space so that its position at time t is given by $\mathbf{r}(t)$.
(i) The velocity of the particle at time t is $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$.
(ii) The speed of the particle at time t is $|\mathbf{v}(t)|=\left|\mathbf{r}^{\prime}(t)\right|$.
(iii) The acceleration of the particle at time t is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$.

Example 1: Find the velocity, acceleration, and speed of a particle with position function $\mathbf{r}(t)=\left\langle e^{t}, e^{-t}\right\rangle$ at $t=0$. Find velocity and acceleration vectors for the given value of t.

Example 2: Find the velocity, acceleration and speed of a particle with position function $\mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \sin t, t\right\rangle$.

Example 3: The acceleration of a particle at time t is given by $\mathbf{a}(t)=\left\langle t, t^{2}, \cos (2 t)\right\rangle$. Given that $\mathbf{v}(0)=\langle 1,0,1\rangle$ and $\mathbf{r}(0)=\langle 0,1,0\rangle$, find $\mathbf{r}(t)$.

