Section 14.1 Functions of Several Variables

Definition: Let D be a subset of R^{2}. A function f of two variables is a rule that assigns to each ordered pair (x, y) in D a unique real number $f(x, y)$. The set D is called the domain of f and its range is the set of values $\{f(x, y) \mid(x, y) \in D\}$. Note: Just as the domain of $y=f(x)$ is the set of all values of x for which $f(x)$ is defined, the domain of $z=f(x, y)$ is the set of all points (x, y) for which $f(x, y)$ is defined. Thus the domain of $z=f(x, y)$ lies entirely in the $x y$-plane.

Example 1: Find and sketch the domain of the following functions.
a.) $f(x, y)=\ln (2 x+y)$
b.) $f(x, y)=\sqrt{x}+\sqrt{y}$
c.) $f(x, y)=\frac{\sqrt{9-x^{2}-y^{2}}}{x+2 y}$

Definition: If f is a function of two variables with domain D, the graph of f is the set
$S=\left\{(x, y, z) \in R^{3} \mid z=f(x, y),(x, y) \in D\right\}$. Just as the graph of a function of one variable is a curve with equation $y=f(x)$, the graph of a function f of two variables is a surface S with equation $z=f(x, y)$. We can visualize the graph S of f as lying directly above or below its domain D in the $x y$ plane.

Example 2: Sketch the graph of:
a.) $f(x, y)=x+2 y+4$
b.) $f(x, y)=x^{2}+9 y^{2}$
c.) $f(x, y)=\sqrt{x^{2}+y^{2}}$

Definition: The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant in the range of f. In other words, a level curve shows where the graph of f has height k. The level curves $f(x, y)$ are just the horizontal traces of the graph of f in the plane $z=k$ projected down to the $x y$ plane. A graph of the level curves is called a countour plot.

Example 3: Describe the level curves of
a.) a hyperboloid of one sheet
b.) a hyperboloid of two sheets

Example 4: For the level curve shown below, sketch the surface.

Example 5: Sketch the level curves for the following functions:
a.) $f(x, y)=2+4 x-y$ for $k=-2,0,2$.
b.) $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ for $k=0,1,2,3$.

Definition: A function of three variables, f, is a rule that assigns to each ordered triple (x, y, z) in the doman $D \subset R^{3}$ a real number $w=f(x, y, z)$. The graph of a function of three variables is in four dimensional space. The domain of a function of three variables is in three dimension.

Example 6: Find the domain of $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}-9}}$.

A function of three variables has level surfaces, which are surfaces of the form $f(x, y, z)=k$. If the point $f(x, y, z)$ moves along a level surface, the value $f(x, y, z)$ remains fixed.

Example 7: Describe the level surfaces of $f(x, y, z)=x+y+z$.

Example 8: Describe the level surfaces of $f(x, y, z)=x^{2}+y^{2}+z^{2}$.

