Section 14.3 Partial Derivatives

If f is a function of two variables x and y, suppose we only let x vary while keeping y fixed, say y = b, where b is constant. Then we are really considering a function of a single variable x, namely g(x) = f(x, b). If g has a derivative ar x = a, then we call it the **partial derivative of** f respect to x at the point (a, b), denoted by $f_x(a, b)$. Similarly, the **partial derivative of** f respect to y at the point (a, b), denoted by $f_y(a, b)$, is obtained by letting y vary while keeping x fixed.

Example 1: If $f(x, y) = x^2 + 2y^3 - 4xy$, find $f_x(-1, 2)$ and $f_y(-1, 2)$.

Example 2: If
$$f(x,y) = ye^{-x} + 2x$$
, find $\frac{\partial f}{\partial x}\Big|_{(1,0)}$ and $\frac{\partial f}{\partial y}\Big|_{(1,0)}$

Example 3: Find $f_x(x, y)$ and $f_y(x, y)$ for $f(x, y) = e^{\sin(2xy)}$.

Geometric interpretation of partial derivatives: Recall that the equation z = f(x, y) represents a surface S. If f(a, b) = c, then the point P(a, b, c) lies on S. The vertical plane y = b intersects S in a curve C_1 . Similarly, The vertical plane x = a intersects S in a curve C_2 . Note that the curve C_1 is the graph of g(x) = f(x, b), so the slope of the tangent line to the graph of g(x) at the point P is $g'(a) = f_x(a, b)$, Similarly, the curve C_2 is the graph of h(y) = f(a, y), so the slope of the tangent line to the graph of $f_y(a, b)$ and the point P is $h'(b) = f_y(a, b)$. Thus, the partial derivatives $f_x(a, b)$ and $f_y(a, b)$ can be interpreted geometrically as the slopes of the tangent lines at the point P(a, b, c) to the traces C_1 and C_2 of S in the planes y = b and x = a.

Functions of more than two variables: Partial derivatives can also be defined for functions of three variables, for example if f is a function of x, y and z, then the partial derivative of f with respect to x is found by holding y and z constant and differentiating f with respect to x.

Example 4: Find f_x , f_y and f_z for:

(i) $f(x, y, z) = xy^2 z^3$

(ii) $f(x, y, z) = xe^y + ye^z + ze^x$

Higher derivatives: If f is a function of two variables, then its partial derivatives f_x and f_y are also functions of two variables, so we consider their partial derivatives $(f_x)_x$, $(f_x)_y$, $(f_y)_x$ and $(f_y)_y$. These are called the **second order partial derivatives** of f. If x = f(x, y), we use the following notation:

(i)
$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

(ii) $f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$
(iii) $f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$

(iv)
$$f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

Clairaut's Theorem: If f is defined on a disk D that containes the point (a, b), and f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$.

Example 5: Find all second order partial derivatives for $f(x, y) = x \cos y + y e^x$