Section 14.3 Partial Derivatives

If f is a function of two variables x and y, suppose we only let x vary while keeping y fixed, say $y=b$, where b is constant. Then we are really considering a function of a single variable x, namely $g(x)=f(x, b)$. If g has a derivative ar $x=a$, then we call it the partial derivative of f respect to x at the point (a, b), denoted by $f_{x}(a, b)$. Similarly, the partial derivative of f respect to y at the point (a, b), denoted by $f_{y}(a, b)$, is obtained by letting y vary while keeping x fixed.

Example 1: If $f(x, y)=x^{2}+2 y^{3}-4 x y$, find $f_{x}(-1,2)$ and $f_{y}(-1,2)$.

Example 2: If $f(x, y)=y e^{-x}+2 x$, find $\left.\frac{\partial f}{\partial x}\right|_{(1,0)}$ and $\left.\frac{\partial f}{\partial y}\right|_{(1,0)}$

Example 3: Find $f_{x}(x, y)$ and $f_{y}(x, y)$ for $f(x, y)=e^{\sin (2 x y)}$.

Geometric interpretation of partial derivatives: Recall that the equation $z=f(x, y)$ represents a surface S. If $f(a, b)=c$, then the point $P(a, b, c)$ lies on S. The vertical plane $y=b$ intersects S in a curve C_{1}. Similarly, The vertical plane $x=a$ intersects S in a curve C_{2}. Note that the curve C_{1} is the graph of $g(x)=f(x, b)$, so the slope of the tangent line to the graph of $g(x)$ at the point P is $g^{\prime}(a)=f_{x}(a, b)$, Similarly, the curve C_{2} is the graph of $h(y)=f(a, y)$, so the slope of the tangent line to the graph of $h(y)$ at the point P is $h^{\prime}(b)=f_{y}(a, b)$. Thus, the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ can be interpreted geometrically as the slopes of the tangent lines at the point $P(a, b, c)$ to the traces C_{1} and C_{2} of S in the planes $y=b$ and $x=a$.

Functions of more than two variables: Partial derivatives can also be defined for functions of three variables, for example if f is a function of x, y and z, then the partial derivative of f with respect to x is found by holding y and z constant and differentiating f with respect to x.

Example 4: Find f_{x}, f_{y} and f_{z} for:
(i) $f(x, y, z)=x y^{2} z^{3}$
(ii) $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}$

Higher derivatives: If f is a function of two variables, then its partial derivatives f_{x} and f_{y} are also functions of two variables, so we consider their partial derivatives $\left(f_{x}\right)_{x},\left(f_{x}\right)_{y},\left(f_{y}\right)_{x}$ and $\left(f_{y}\right)_{y}$. These are called the second order partial derivatives of f. If $x=f(x, y)$, we use the following notation:
(i) $f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$
(ii) $f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$
(iii) $f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$
(iv) $f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)$

Clairaut's Theorem: If f is defined on a disk D that containes the point (a, b), and $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.

Example 5: Find all second order partial derivatives for $f(x, y)=x \cos y+y e^{x}$

