Section 14.4 Tangent Planes and Differentials

One of the most significant ideas in single variable calculus is how the tangent line can be used to approximate a function at its point of tangency. If we zoom in toward a point on a graph of a differentiable function, the graph becomes indistinguishable from its tangent line. Likewise, a tangent plane can be used to approximate a surface at a point. We need to develop a formula for the equation of a tangent plane to a surface $z=f(x, y)$ at a point $\left(x_{0}, y_{0}, z_{0}\right)$.

Suppose $z=f(x, y)$ is a surface and let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the surface. Let C_{1} be the curve obtained by intersecting the surface with the plane $y=y_{0}$. Then the slope of the tangent line to the curve C_{1} at the point P is $f_{x}\left(x_{0}, y_{0}\right)$. Similarly, Let C_{2} be the curve obtained by intersecting the surface with the plane $x=x_{0}$. Then the slope of the tangent line to the curve C_{2} at the point P is $f_{y}\left(x_{0}, y_{0}\right)$. The tangent plane is defined to be the plane that contains both of these tangent lines.

Recall the equation of a plane is $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=0$. If we can find the direction vector of each tangent line, then we know from a previous result that the normal vector to the plane is the cross product of these two direction vectors.

Let $\mathbf{r}(x, y)=\langle x, y, f(x, y)\rangle$. Then $\mathbf{r}_{x}\left(x_{0}, y_{0}\right)=\left\langle 1,0, f_{x}\left(x_{0}, y_{0}\right)\right\rangle$ and $\mathbf{r}_{y}\left(x_{0}, y_{0}\right)=\left\langle 0,1, f_{y}\left(x_{0}, y_{0}\right)\right\rangle$ are the two tangent vectors to the curves C_{1} and C_{2}, respectively. Since the tangent plane contains both tangent vectors, $\mathbf{n}=\mathbf{r}_{x}\left(x_{0}, y_{0}\right) \times \mathbf{r}_{y}\left(x_{0}, y_{0}\right)$, hence
$\mathbf{n}=\left\langle-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}, 1\right\rangle\right.$. The tangent plane would then be $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=0$, which yields $\left\langle-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}, 1\right\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0\right.$ and hence
$-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z-z_{0}=0$, and therefore $z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.

Definition: The tangent plane to the surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example 1: Find the equation of the tangent plane to the surface $z=x^{2}+3 y^{2}$ at the point $(1,-1,4)$.

Example 2: (a) Find the equation of the tangent plane to the surface $z=\ln (x-3 y)$ at the point $(7,2,0)$.
(b) Find the equation of the normal line to the plane at the point $(7,2,0)$.

Differentials: Recall from calculus 1 that if $y=f(x)$, then $d x$ is an independent variable. The differential $d y$ depends on $d x$ and is defined as $d y=f^{\prime}(x) d x$. Differentials can be used in estimating the errors that occur because of approximate measurements. This is seen in the use of the tangent line as an approximation to $f(x)$ near its point of tangency.

Example 3: Use differentials to approximate $(1.97)^{6}$.

Definition: Suppose $z=f(x, y), x$ changes from x to $x+\Delta x$ and y changes from y to $y+\Delta y$. Then the corresponding change in z is $\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)$. This represents the change in the height of the surface. The differential is defined as $d z=f_{x}(x, y) d x+f_{y}(x, y) d y$. This represents the change in height of the tangent plane.

Example 4: Find the differential of $z=y \sin (x y)$.

Example 5: Find the differential of $w=x y z$.

How we use differentials with functions of two variables: The same way we did for functions of one variable, except instead of using the tangent line we will be using the tangent plane.

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example 6: Use differentials to approximate $\sqrt{9(1.95)^{2}+(8.1)^{2}}$.

Example 7: Find the equation of the tangent plane to the surface $f(x, y)=x e^{x y}$ at the point $(1,0,1)$ and use this plane to approximate $f(1.1,-0.2)$.

Example 8: The base radius and height of a right circular cone are measured as 10 cm and 25 cm , respectively, with a possible error in measurement of 0.1 cm and 0.2 cm , respectively . Use differentials to estimate the maximum error in the calculated volume of the cone.

