Section 14.5 The Chain Rule

Recall the chain rule in 2d: If $y=f(x)$ and $x=g(t)$, then $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}$.
Example 1: If $y=x^{3}$ and $x=\cos t$, find $\frac{d y}{d t}$.

The chain rule in higher dimensions:
Chain rule, case 1: If $z=f(x, y), x=g(t), y=h(t)$, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Example 2: If $z=2 x^{2} y^{3}+6 x y^{2}, x=\frac{1}{t}, y=\cos t$, find $\frac{d z}{d t}$.

Example 3: If $z=\ln \left(x^{2}+y^{2}\right), x=1+e^{6 t}, y=\sec ^{2}(5 t)$, find $\frac{d z}{d t}$

Chain rule, case 2: If $z=f(x, y), x=g(s, t), y=h(s, t)$, then
$\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad$ and $\quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$
Example 4: if $z=x^{2}-3 x^{2} y^{3}, x=s e^{t}, y=s e^{-t}$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

Chain rule, general version: If $u=f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ and each x_{i} is a function of $t_{1}, t_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{m}$, then

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\ldots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}
$$

Example 5: If $u=x^{4} y+y^{2} z^{3}, x=r s e^{t}, y=r s^{2} e^{-t}, z=r^{2} s \sin t$, find $\frac{\partial u}{\partial s}, \frac{\partial u}{\partial r}, \frac{\partial u}{\partial t}$.

Example 6: The radius of a circular cylinder is decreasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$ while the height is increasing at a rate of $5 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume of the cylinder changing when the radius is 80 cm and the height is 360 cm ?

Example 7: The length l, width w and height h of a box change with time. At a certain instant, the dimensions are $l=1 \mathrm{~m}$ and $w=h=2 \mathrm{~m}$, and l and w are increasing at rate of $2 \mathrm{~m} / \mathrm{s}$ while h is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. At that same instant, find the rate at which the surface area is changing.

