Section 14.5 The Chain Rule

Recall the chain rule in 2d: If y = f(x) and x = g(t), then $\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$.

Example 1: If $y = x^3$ and $x = \cos t$, find $\frac{dy}{dt}$.

The chain rule in higher dimensions:

<u>Chain rule, case 1</u>: If z = f(x, y), x = g(t), y = h(t), then

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Example 2: If $z = 2x^2y^3 + 6xy^2$, $x = \frac{1}{t}$, $y = \cos t$, find $\frac{dz}{dt}$.

Example 3: If
$$z = \ln(x^2 + y^2)$$
, $x = 1 + e^{6t}$, $y = \sec^2(5t)$, find $\frac{dz}{dt}$

<u>Chain rule, case 2:</u> If z = f(x, y), x = g(s, t), y = h(s, t), then $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$ and $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$

Example 4: if $z = x^2 - 3x^2y^3$, $x = se^t$, $y = se^{-t}$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

<u>Chain rule, general version</u>: If $u = f(x_1, x_2, x_3, ..., x_n)$ and each x_i is a function of $t_1, t_2, t_3, ..., t_m$, then

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

Example 5: If $u = x^4 y + y^2 z^3$, $x = rse^t$, $y = rs^2 e^{-t}$, $z = r^2 s \sin t$, find $\frac{\partial u}{\partial s}$, $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial t}$.

Example 6: The radius of a circular cylinder is decreasing at a rate of 2 cm/s while the height is increasing at a rate of 5 cm/sec. At what rate is the volume of the cylinder changing when the radius is 80 cm and the height is 360 cm?

Example 7: The length l, width w and height h of a box change with time. At a certain instant, the dimensions are l = 1 m and w = h = 2 m, and l and w are increasing at rate of 2 m/s while h is decreasing at a rate of 3 m/s. At that same instant, find the rate at which the surface area is changing.