Section 14.6 Directional Derivatives

Recall: If z = f(x, y), then $f_x(x_0, y_0)$ is the rate of change of z in the x-direction while y is held constant. Another way to view this is, $f_x(x_0, y_0)$ is the rate of change of z in the direction of the unit vector $\langle 1, 0 \rangle$. Similarly, $f_y(x_0, y_0)$ is the rate of change of z in the direction of the unit vector $\langle 0, 1 \rangle$.

Suppose now we wish to find the rate of change of z at (x_0, y_0) in the direction of an arbitrary unit vector $\mathbf{u} = \langle a, b \rangle$. To do this, we consider the surface S with equation z = f(x, y) and let $z_0 = f(x_0, y_0)$. Then the point $P(x_0, y_0, z_0)$ lies on S. The vertical plane that passes thru P in the direction of \mathbf{u} intersects the surface in a curve C. The slope of the tangent line T to C at P is the rate of change of z in the direction of \mathbf{u} , called the **directional derivative**.

Definition: The **directional derivative** of z = f(x, y) at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is $D_{\mathbf{u}}f(x_0, y_0) = f_x(x_0, y_0)a + f_y(x_0, y_0)b = \langle f_x(x, y), f_y(x, y) \rangle \cdot \langle a, b \rangle$.

Example 1: Given $f(x,y) = x^3 - 4x^2y + y^2$, find the directional derivative at the point (0,-1) in the direction $\mathbf{u} = \left\langle \frac{3}{5}, \frac{4}{5} \right\rangle$.

Example 2: Suppose $f(x,y) = y^2 + 2xy$. Find $D_{\mathbf{u}}f(x,y)$ at the point (2,3) where \mathbf{u} is the unit vector corresponding to $\frac{\pi}{3}$.

Example 3: Find $D_{\mathbf{u}}f(x,y)$ at the point (1,2) in the direction of $\langle 1,-3\rangle$ to the surface $f(x,y) = x^3 + 2x^2y^2$.

Example 4: If $f(x, y, z) = z^3 - x^2 y$, find $D_{\mathbf{u}} f(1, 6, 2)$ if $\mathbf{u} = \left\langle \frac{3}{13}, \frac{4}{13}, \frac{12}{13} \right\rangle$.

Definition: We define the **gradient** of z = f(x, y) to be the vector $\nabla f = \langle f_x(x, y), f_y(x, y) \rangle$. Therefore, $D_{\mathbf{u}}f(x_0, y_0) = \langle f_x(x_0, y_0), f_y(x_0, y_0) \rangle \cdot \langle a, b \rangle = \nabla f \cdot \mathbf{u}.$

Example 5: If $f(x, y) = e^x - \cos(xy)$, find $\nabla f(1, 0)$.

Fact: If we consider all possible directional derivatives at a given point, the **maximum rate of change** occurs when **u** has the same direction as ∇f . Moreover, the maximum value of the directional derivative is $|\nabla f|$.

Example 6: Let $f(x, y) = xe^y$.

a.) Find the rate of change of f at the point (2,0) in the direction of the point P(2,0) to the point $Q\left(\frac{1}{2},2\right)$.

b.) At the point (2,0), in what direction does f have the maximum rate of change? What is the maximum rate of change?

Example 7: Find the maximum rate of change of $f(x,y) = \tan(3x+2y)$ at the point $\left(\frac{\pi}{6}, -\frac{\pi}{8}\right)$ and the direction in which it occurs.

Tangent planes to level surfaces: Suppose S is a surface with equation F(x, y, z) = k, that is, it is a level surface of a function F, and let $P(x_0, y_0, z_0)$ be a point on S. Let C be any curve that lies on S and passes through P. Recall from section 11.6 that we can represent the curve C by the vector function $\mathbf{r}(\mathbf{t}) = \langle x(t), y(t), z(t) \rangle$. Let t_0 be the parameter that corresponds to the point $P(x_0, y_0, z_0)$, that is $\mathbf{r}(t_0) = \langle x_0, y_0, z_0 \rangle$. Now, since C lies on the surface S, it must satisfy the equation of the surface, that is F(x(t), y(t), z(t)) = k. Using the chain rule and differentiating both sides with respect to t, we obtain

 $\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0.$ This is equivalent to

 $\left\langle \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right\rangle \cdot \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle = 0$, thus $\nabla f \cdot \mathbf{r}'(\mathbf{t}) = 0$. Thus the gradient vector is perpendicular to the tangent vector. Hence we define the **tangent plane to the level surface** F(x, y, z) = k at the point $P(x_0, y_0, z_0)$ to be the plane that passes thru $P(x_0, y_0, z_0)$ and has normal vector $\nabla f(x_0, y_0, z_0)$.

Definition:

(i) The **tangent plane** to the level surface F(x, y, z) = k at the point $P(x_0, y_0, z_0)$ is

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$

(ii) The **normal line** to the surface S at the point $P(x_0, y_0, z_0)$ is the line thru P perpendicular to the tangent plane, thus the normal line has direction vector ∇F .

Example 8: Find the tangent plane and normal line to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$
 at the point $(-2, 1, -3)$.

Example 9: Find the tangent plane to the surface $x = y^2 + z^2 + 1$ at the point (3, 1, -1)

Example 10: The temperature at a point (x, y, z) is given by $T(x, y, z) = 200e^{-x^2-3y^2-9z^2}$ where T is measured in degrees celsius and x, y, z in meters.

a.) Find the rate of change of temperature at the point (2, -1, 2) in the direction toward the point (3, -3, 3).

b.) In what direction does the temperature increase fastest at P?

c.) Find the maximum rate of change at P.