Section 14.6 Directional Derivatives

Recall: If $z=f(x, y)$, then $f_{x}\left(x_{0}, y_{0}\right)$ is the rate of change of z in the x-direction while y is held constant. Another way to view this is, $f_{x}\left(x_{0}, y_{0}\right)$ is the rate of change of z in the direction of the unit vector $\langle 1,0\rangle$. Similarly, $f_{y}\left(x_{0}, y_{0}\right)$ is the rate of change of z in the direction of the unit vector $\langle 0,1\rangle$.

Suppose now we wish to find the rate of change of z at $\left(x_{0}, y_{0}\right)$ in the direction of an arbitrary unit vector $\mathbf{u}=\langle a, b\rangle$. To do this, we consider the surface S with equation $z=f(x, y)$ and let $z_{0}=f\left(x_{0}, y_{0}\right)$. Then the point $P\left(x_{0}, y_{0}, z_{0}\right)$ lies on S. The vertical plane that passes thru P in the direction of \mathbf{u} intersects the surface in a curve C. The slope of the tangent line T to C at P is the rate of change of z in the direction of \mathbf{u}, called the directional derivative.

Definition: The directional derivative of $z=f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot\langle a, b\rangle$.

Example 1: Given $f(x, y)=x^{3}-4 x^{2} y+y^{2}$, find the directional derivative at the point $(0,-1)$ in the direction $\mathbf{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.

Example 2: Suppose $f(x, y)=y^{2}+2 x y$. Find $D_{\mathbf{u}} f(x, y)$ at the point $(2,3)$ where \mathbf{u} is the unit vector corresponding to $\frac{\pi}{3}$.

Example 3: Find $D_{\mathbf{u}} f(x, y)$ at the point $(1,2)$ in the direction of $\langle 1,-3\rangle$ to the surface $f(x, y)=x^{3}+2 x^{2} y^{2}$.

Example 4: If $f(x, y, z)=z^{3}-x^{2} y$, find $D_{\mathbf{u}} f(1,6,2)$ if $\mathbf{u}=\left\langle\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right\rangle$.

Definition: We define the gradient of $z=f(x, y)$ to be the vector $\nabla f=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$. Therefore, $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\left\langle f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right\rangle \cdot\langle a, b\rangle=\nabla f \cdot \mathbf{u}$.

Example 5: If $f(x, y)=e^{x}-\cos (x y)$, find $\nabla f(1,0)$.

Fact: If we consider all possible directional derivatives at a given point, the maximum rate of change occurs when \mathbf{u} has the same direction as ∇f. Moreover, the maximum value of the directional derivative is $|\nabla f|$.

Example 6: Let $f(x, y)=x e^{y}$.
a.) Find the rate of change of f at the point $(2,0)$ in the direction of the point $P(2,0)$ to the point $Q\left(\frac{1}{2}, 2\right)$.
b.) At the point $(2,0)$, in what direction does f have the maximum rate of change? What is the maximum rate of change?

Example 7: Find the maximum rate of change of $f(x, y)=\tan (3 x+2 y)$ at the point $\left(\frac{\pi}{6},-\frac{\pi}{8}\right)$ and the direction in which it occurs.

Tangent planes to level surfaces: Suppose S is a surface with equation $F(x, y, z)=k$, that is, it is a level surface of a function F, and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S. Let C be any curve that lies on S and passes through P. Recall from section 11.6 that we can represent the curve C by the vector function $\mathbf{r}(\mathbf{t}))=\langle x(t), y(t), z(t)\rangle$. Let t_{0} be the parameter that corresponds to the point $P\left(x_{0}, y_{0}, z_{0}\right)$, that is $\mathbf{r}\left(t_{0}\right)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$. Now, since C lies on the surface S, it must satisfy the equation of the surface, that is $F(x(t), y(t), z(t))=k$. Using the chain rule and differentiating both sides with respect to t, we obtain
$\frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}+\frac{\partial F}{\partial z} \frac{d z}{d t}=0$. This is equivalent to
$\left\langle\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle=0$, thus $\nabla f \cdot \mathbf{r}^{\prime}(\mathbf{t})=0$. Thus the gradient vector is perpendicular to the tangent vector. Hence we define the tangent plane to the level surface $F(x, y, z)=k$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ to be the plane that passes thru $P\left(x_{0}, y_{0}, z_{0}\right)$ and has normal vector $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$.

Definition:
(i) The tangent plane to the level surface $F(x, y, z)=k$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is
$F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.
(ii) The normal line to the surface S at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is the line thru P perpendicular to the tangent plane, thus the normal line has direction vector ∇F.

Example 8: Find the tangent plane and normal line to the ellipsoid
$\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3$ at the point $(-2,1,-3)$.

Example 9: Find the tangent plane to the surface $x=y^{2}+z^{2}+1$ at the point $(3,1,-1)$

Example 10: The temperature at a point (x, y, z) is given by $T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}$ where T is measured in degrees celsius and x, y, z in meters.
a.) Find the rate of change of temperature at the point $(2,-1,2)$ in the direction toward the point $(3,-3,3)$.
b.) In what direction does the temperature increase fastest at P ?
c.) Find the maximum rate of change at P.

