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Section 14.6 Directional Derivatives

Recall: If z = f(x,y), then fy(zo,y0) is the rate of change of z in the z-direction while y is held constant.
Another way to view this is, fz(xo,y0) is the rate of change of z in the direction of the unit vector (1,0).
Similarly, f,(zo, ) is the rate of change of z in the direction of the unit vector (0, 1).

Suppose now we wish to find the rate of change of z at (xg,y0) in the direction of an arbitrary unit vector
u = {a,b). To do this, we consider the surface S with equation z = f(z,y) and let z9 = f(zg,30). Then
the point P(zp, yo, z0) lies on S. The vertical plane that passes thru P in the direction of u intersects the
surface in a curve C'. The slope of the tangent line T to C' at P is the rate of change of z in the direction
of u, called the directional derivative.

Definition: The directional derivative of z = f(x,y) at (zo,yo) in the direction of a unit vector u = {a, b}
is Duf(l'ﬂ’y[]) = fm(zl]:y(])a‘ + fy(r(h yll)b = (fa:(:”:y):fy(-ra y)) . (a’: b)
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Example 1: Given f(x,y) = 2° —4a2y+y?, find the directional derivative at the point (0, 1) in the direction
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Example 2: Suppose f(z,y) = y*> + 2ry. Find Dyf(z,y) at the point (2,3) where u is the unit vector
corresponding to —. -

tj:<cos —%:) 5‘”%—>
—= 1=
u:<ﬁ>§>
£ =234 Fyz aur 2%

b

=l ru(33>= 1P

=
0, 8(a3d= {o,10){ &)
_ V21543



Math251_Spring2020_section14_6_filled.notebook February 19, 2020

Example 3: Find Dy f(x,y) at the point (1,2) in the direction of (1, —3) to the surface f(z,y) = z* 4+ 22%y>.
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Example 4: If f(z,y,2) = 2° — 2%y, find Dy f(1,6,2) ]fu7<13 13’ 13>
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Definition: We define the gradient of z = f(z,y) to be the vector Vf = (f.(x,v), fy(z,y)). Therefore,
Dy f(zo,y0) = (fo(x0,m0); fy(zo,90)) - (a,b) =V [ -u.

Example 5: If f(z,y) = ¢* — cos(zy), find Vf(1,0).
CEy by
= < ei_r 6%“\(7\%\/ Y s (X %§>

“C “)OD; < e) O>



Math251_Spring2020_section14_6_filled.notebook February 19, 2020

Fact: If we consider all possible directional derivatives at a given point, the maximum rate of change
occurs when u has the same direction as V f. Moreover, the maximum value of the directional derivative
is |V f].
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Example 6: Let f(z,y) = zev.
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a.) Find the rate of change of f at the point (2, 0) in the direction of the point P(2,0) to the point @ (E’ 2)
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b.) At the point (2,0), in what direction does f have the maximum rate of change? What is the maximum
rate of change?
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Example 7: Find the maximum rate of change of f(z,y) = tan(3z + 2y) at the point (gf%) and the
direction in which it occurs.
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Tangent planes to level surfaces: Suppose S is a surface with equation that is, it
is a level surface of a function F, and let P(zq,y0,20) be a point on S. Let be any curve that lies
on S and passes through P. Recall from section 11.6 that we can represent the curve C' by the vector
function r(t)) = (z(t), y(t), z(¢)). Let ¢y be the parameter that corresponds to the point P(xg,yo, 20), that
is r(ty) = (20, Yo, 20). Now, since C' lies on the surface S, it must satisfy the equation of the surface, that is

F(z(t),y(t), z(t)) = k Using the chain rule and differentiating both sides with respect to ¢, we obtain
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(a—I, %, E> . <E, s E> =0, thus Vf-r/(t) = 0. Thus the gradient vector is perpendicular to the

tangent vector. Hence we define the tangent plane to the level surface F(z,y,z) = k at the point
P(z0,90,20) to be the plane that passes thru P(zg,yo.20) and has normal vector V f(zg, yo. z0)-
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Definition:

(i) The tangent plane to the level surface F(z,y, z) = k at the point P(xq,yo, z0) is

F(zo, 90, 20) (@ — x0) + Fy(z0, 90, 20)(y — %0) + F (20,90, 20)(2 — 20) = 0.

(ii) The normal line to the surface S at the point P(zq,90,20) is the line thru P perpendicular to the

tangent plane, thus the normal line has direction vector VF.

Example 8: Find the tangent plane and normal line to the ellipsoid
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Example 9: Find the tangent plane to the surface # = % + 22 4 1 at the point (3,1, —1)
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Example 10: The temperature at a point (z,y,z) is given by T(z,y,z) = 2006~ =3 92" where T is
measured in degrees celsius and z, y, z in meters. P ey

a.) Find the rate of change of temperature at the point (2, —1,2) in the direction toward the point (3, —3, 3).
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b.) In what direction does the temperature increase fastest at P7
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¢.) Find the maximum rate of change at P.
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