Section 14.8 Lagrange Multipliers

Lagrange Multipliers is another method used to maximize or minimize a general function $z=f(x, y)$ subject to the constraint $g(x, y)=k$. In other words, we seek the extreme values of $z=f(x, y)$ when the point (x, y) is restricted to lie on the level curve $g(x, y)=k$.

Suppose we wish to maximize $f(x, y)$ subject to the constraint $g(x, y)=k$. The figure below shows this constraint along with several level curves of the surface $f(x, y)=c$ for $c=7,8,9,10,11$. Notice where ever the constraint level curve intersects the level curves of $f(x, y)$, we are on the surface $z=f(x, y)$ subject to the constraint $g(x, y)=k$. Every place the constraint $g(x, y)$ intersects the level curve of $f(x, y)$, we get different heights of the surface. Therefore we are looking at the point where the constraint $g(x, y)$ intersects the level curves of $f(x, y)$ ONLY ONCE, (otherwise the value of c could increase further and still satisfy the constrant).

In general, to maximize $f(x, y)$ subject to $g(x, y)=k$ we must find find the largest value of c such that the level curve $f(x, y)=c$ intersects $g(x, y)=k$. Likewise, to minimize $f(x, y)$ subject to $g(x, y)=k$ is to find the smallest value of c such that the level curve $f(x, y)=c$ intersects $g(x, y)=k$.

This happens when the level curves of $f(x, y)$ touches the level curve $g(x, y)=k$ only once, in which case both level curves have a common tangent line, and therefore therefore their normal lines are parallel. Thus their gradient vectors are scalar multiples of each other. Thus $\nabla f=\lambda \nabla g$ for some scalar λ. The number λ is called the Lagrange Multiplier.

To maximize/minimize a general function $z=f(x, y)$ subject to a constraint of the form $g(x, y)=k$ (assuming that these extreme values exist):

1. Find all values x, y, and λ such that

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

and

$$
g(x, y)=k
$$

2. Evaluate f at all points (x, y) that arise from the previous step. The largest of these values is the absolute maximum of f and the smallest of these values is the absolute minimum of f. Note: A similar procedure is followed for functions of three variables.

Example 1: Find the extreme values of $f(x, y)=3 x+y$ subject to the constraint $x^{2}+y^{2}=10$.

Example 2: Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ subject to the constraint $x^{2}+16 y^{2}=16$.

Example 3: Find the extreme values of $f(x, y)=x^{2}+y^{2}+4 x-4 y$ subject to the constraint $x^{2}+y^{2} \leq 9$.

Example 4: Find the minimum value of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraint $x+3 y-2 z=12$.

Example 5: Find the volume of the largest rectangular box with faces parallel to the coordinate planes than can be inscribed in the ellipsoid $16 x^{2}+4 y^{2}+9 z^{2}=144$.

Example 6: Find the points on the sphere $x^{2}+y^{2}+z^{2}=4$ that are closest to and farthest from the point $(3,1,-1)$.

