Section 15.1 Double Integrals over Rectangles

Recall in calculus 1, in order to define the definite integral of $y=f(x)$ over the interval $[a, b]$, we first took a partition of the interval $[a, b]$ into n subintervals, and for each subinterval $\left[x_{i-1}, x_{i}\right]$, we defined $\Delta x_{i}=x_{i}-x_{i-1}$ and x_{i}^{*} to be any point on the subinterval. We then defined the definite integral of $y=f(x)$ over the interval $[a, b]$ to be $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$.

In a similar manner, we now consider a function f of two variables defined on a closed rectangle $R=\{(x, y) \mid a \leq x \leq b, y \leq c \leq d\}$. We take a partition of R into sub-rectangles, and as before, $\Delta x_{i}=x_{i}-x_{i-1}$ and $\Delta y_{i}=y_{j}-y_{j-1}$, and $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ is any point in the subrectangle $R_{i j}$. If the area of $R_{i j}$ is $\Delta A_{i j}=\Delta x_{i} \Delta y_{j}$, then we define the Double Integral of $f(x, y)$ over the rectangle R to be

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\left(x_{i j}^{*}, y_{i j}^{*}\right)\right) \Delta A_{i j}
$$

Iterated Integrals

Suppose $z=f(x, y)$ is a function of two variables that is integrable over the rectangle $R=[a, b] \times[c, d]$.
a.) We use the notation $\int_{a}^{b} f(x, y) d x$ to mean that y is held fixed and $f(x, y)$ is integrated with respect to x from $x=a$ to $x=b$. This is called partial integration with respect to x.
b.) We use the notation $\int_{c}^{d} f(x, y) d y$ to mean that x is held fixed and $f(x, y)$ is integrated with respect to y from $y=c$ to $y=d$. This is called partial integration with respect to y.

Example 1: Find $\int_{2}^{3}\left(x^{2}+y^{3}\right) d x$

Example 2: Find $\int_{0}^{\pi / 4} x \cos (3 y) d y$

Definition: An iterated integral is an integral of the form $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$ or $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$
(i) $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y$
(ii) $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x$

Example 3: Evaluate $\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x$ and $\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$.

Fubini's Theorem: If f is continuous on the rectangle $R=[a, b] \times[c, d]$, then $\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$.
Special case of Fubini: In the case where $f(x, y)=g(x) h(y)$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} g(x) h(y) d y d x=\int_{a}^{b} g(x) d x \int_{c}^{d} h(y) d y
$$

Note: You will find this special case VERY useful!! Get used to recognizing when it can be applied!
Example 4: Evaluate $\int_{1}^{2} \int_{0}^{3} 6 x^{2} y d x d y$

Example 5: Evaluate $\int_{4}^{5} \int_{0}^{1} \frac{1+x}{1+y} d x d y$

Example 6: Evaluate $\iint_{R} x \sqrt{1+x^{2}} d A$, where $R=\{(x, y) \mid 0 \leq x \leq 1,1 \leq y \leq 2\}$.

Example 7: Evaluate $\iint_{R} 2 x y \cos \left(x^{2} y\right) d A$, where $R=\left\{(x, y) \left\lvert\, 0 \leq x \leq \sqrt{\frac{\pi}{4}}\right., 0 \leq y \leq 1\right\}$

Example 8: Evaluate $\iint_{R} e^{2 x-y} d A$, where $R=[0, \ln 2] \times[0, \ln 5]$.

Example 9: Evaluate $\iint_{R}(y \sin (x y)) d A$, where $R=[0,2] \times[0, \pi]$.

Theorem: If $f(x, y) \geq 0$ and f is continuous on the rectangle R, then the volume V of the solid that lies above R and under the surface $f(x, y)$ is

$$
V=\iint_{R} f(x, y) d A
$$

Example 10: Evaluate the double integral and identify it as the volume of a solid.
$\iint_{R}(3-x) d A, R=\{(x, y) \mid 0 \leq x \leq 3,0 \leq y \leq 8\}$

Example 11: Find the volume of the solid S that is bounded by the paraboloid $x^{2}+2 y^{2}+z=16$, the planes $x=2$ and $y=2$ and the three coordinate planes.

