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Section 15.1 Double Integrals over Rectangles

Recall in calculus 1, in order to define the definite integral of y = f(x) over the interval [a,b], we first
took a partition of the interval [a,b] into n subintervals, and for each subinterval [z;_;,z;], we defined
Ax; = x; — x;_ and x to be any point on the subinterval. We then defined the definite integral of

b n
y = f(z) over the interval [a,b] to be fa flz)dx = nlglalczf(% JA;.

i=1

In a similar manner, we now consider a function f of two variables defined on a closed rectangle
R={(z,y)la <z <by <c<d}. Wetake a partition of R into sub-rectangles, and as before,

Ax; = x; — ;1 and Ay; = y; — yj_1, and (1:;, y:‘J) is any point in the subrectangle R;;. If the area of R;;
is AA;; = Ax;Ay;, then we define the Double Integral of f(z,y) over the rectangle R to be
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Iterated Integrals

Suppose z = f(x,y) is a function of two variables that is integrable over the rectangle R = [a,b] X [c,d].

b
a.) We use the notation | f(z,y)dz to mean that y is held fixed and f(z,y) is integrated with respect to
z fromx =a tox ="b. Tllllis is called partial integration with respect to z.

d
b.) We use the notation

f(z,y)dy to mean that z is held fixed and f(z,y) is integrated with respect to
y from y = ctoy =d. This is called partial integration with respect to y.
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Definition: An iterated integral is an integral of the form / / f(z,y)dzdy or / / flx,y)dydz
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Fubini’s Theorem: If f is continuous on the rectangle R = [a,b] x [c,d], then

J[sewar= [ [ e = [* [ 1600 dsay

Special case of Fubini: In the case where f(x,y) = g(x)h(y), then

B ffsemine [ [y [ S

Note: You will find this special case VERY useful!! Get used to recognizing when it can be applied!
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dxdw o dydx
Example 6: Evaluate // 2V/1+ 2 where R = {(2,9)|0 <2 <1,1 <y <2}
R —
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Example 7: Evaluate //2y y)dA, where R = {( .y)\ogwg\/;ogygl}

e
Fubfll dves not wol K CO\Q”D#‘ wri

he xr\)reﬁmw/ as \r\M)@M\),
= \ @
Two Choice S° émd@ & j 9%3605(7( 4) d%dl

/E & ) 230 os(2 )4

LS MDM
AR w<x:&t

du o 2k — M=AA "




Math251_Spring2020_section15_1_filled.notebook March 18, 2020



Math251_Spring2020_section15_1_filled.notebook March 18, 2020

Example 8 Evaluate f fR Y dA, where B = [0,1n2] x [0,1n5]. @9 K—Lﬁ: ék- é%
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Theorem: If f(z,y) > 0 and f is continuous on the rectangle R, then the volume V of the solid that lies

above R and under the surface f(z,y) is
V=[] fewia
R

Example 10: Evaluate the double integral and identify it as the volume of a solid.
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Example 11: Find the volume of the solid S that is bounded by the paraboloid % + 2y® + z = 16, the planes

Waﬂd the three coordinate planes.
z= F(r4)
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