

Section 15.1 Double Integrals over Rectangles

Recall in calculus 1, in order to define the definite integral of y = f(x) over the interval [a,b], we first took a partition of the interval [a,b] into n subintervals, and for each subinterval $[x_{i-1},x_i]$, we defined $\Delta x_i = x_i - x_{i-1}$ and x_i^* to be any point on the subinterval. We then defined the **definite integral** of y = f(x) over the interval [a,b] to be $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x_i$.

In a similar manner, we now consider a function f of two variables defined on a closed rectangle

 $R = \{(x,y) | a \le x \le b, y \le c \le d\}$. We take a partition of R into sub-rectangles, and as before,

 $\Delta x_i = x_i - x_{i-1}$ and $\Delta y_i = y_j - y_{j-1}$, and (x_{ij}^*, y_{ij}^*) is any point in the subrectangle R_{ij} . If the area of R_{ij} is $\Delta A_{ij} = \Delta x_i \Delta y_j$, then we define the **Double Integral** of f(x, y) over the rectangle R to be

Iterated Integrals

Suppose z = f(x, y) is a function of two variables that is integrable over the rectangle $R = [a, b] \times [c, d]$.

a.) We use the notation $\int_a^b f(x,y) \, dx$ to mean that y is held fixed and f(x,y) is integrated with respect to x from x=a to x=b. This is called **partial integration with respect to** x.

b.) We use the notation $\int_c^d f(x,y) \, \underline{dy}$ to mean that x is held fixed and f(x,y) is integrated with respect to y from y=c to y=d. This is called **partial integration with respect to** y.

Example 1: Find
$$\int_{2}^{2} (x^{2} + y^{3}) dx = \left(\frac{\chi^{3}}{3} + y^{3} \chi\right) \left(\frac{\chi^{2}}{3} + y^{3} \chi\right) = \frac{\chi^{2}}{3} = \frac{\chi^{3}}{3} + \frac{\chi^{3}}{3}$$

Example 2: Find $\int_{0}^{x/4} x \cos(3y) dy = \chi \int_{0}^{x} \frac{1}{3} \sin \frac{3\pi}{3} - \int_{0}^{x} \sin \frac{3\pi}{4} - \int_{0}^{x}$

Fubini's Theorem: If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

$$\iint_{B} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) \underline{dy} dx = \int_{c}^{d} \int_{a}^{b} f(x,y) \underline{dx} dy.$$

Special case of Fubini: In the case where f(x,y) = g(x)h(y), then

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} \underbrace{g(x)h(y)} dy dx = \int_{a}^{b} g(x) dx \int_{c}^{d} h(y) dy$$

Note: You will find this special case VERY useful!! Get used to recognizing when it can be applied!

Note: You will find this special case VERY useful!! Get used to recognizing when it can be applied!

Example 4: Evaluate
$$\int_{1}^{2} \int_{0}^{3} 6x^{2}y \, dx \, dy = \left(\int_{0}^{2} \left(0 \chi^{2} \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left(\chi \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left(\chi \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left(\chi \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left(\chi \, d\chi\right) \left(\chi \, d\chi\right) \left(\int_{0}^{2} \left(\chi \, d\chi\right) \left($$

$$\int_{0}^{1} \int_{1}^{2} \chi \sqrt{1+\chi^{2}} dy d\chi = \left(\int_{0}^{1} \chi \sqrt{1+\chi^{2}} d\chi\right) \int_{1}^{2} dy$$

$$u-sub$$

$$u=1+\chi$$

$$du=2\chi d\chi$$

$$\left(\int_{1}^{2} \frac{1}{2} \sqrt{u} du\right) \int_{1}^{2} dy$$

$$\left(\frac{1}{2} \frac{3}{3} u^{\frac{3}{2}} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{\frac{3}{2}}$$

$$\frac{1}{3} \left(2\sqrt{2}-1\right) \left(2-1\right)$$

$$\frac{1}{3} \left(2\sqrt{2}-1\right)$$

Example 7: Evaluate
$$\iint_{R} 2xy \cos(x^{2}y) dA$$
, where $R = \{(x,y)|0 \le x \le \sqrt{\frac{\pi}{4}}, 0 \le y \le 1\}$

Fubini does not work. cannot write the integrand as $h(x)g(y)$.

Two choice $S : \{dxdy\} \int_{0}^{\sqrt{\pi}} \int_{0}^{1} 2xy \cos(x^{2}y) dydx$
 $dy dx$
 $\int_{0}^{1} \left[\int_{0}^{\pi} 2xy \cos(x^{2}y) dx\right] dx$
 $u - sub$
 $u = x^{2}y$
 $x = \sqrt{\pi}, u = \frac{\pi}{4}y$
 $x = 0, u = 0$

$$\int_{0}^{4} \left[\int_{0}^{4} \cos u \, du \right] \, dy$$

$$\int_{0}^{4} \left[\int_{0}^{4} \cos u \, du \right] \, dy$$

$$\int_{0}^{4} \left[\int_{0}^{4} \cos u \, du \right] \, dy$$

$$= \frac{4}{16} \left[\cos \frac{\pi}{4} - \cos \left(0 \right) \right]$$

$$= \frac{4}{16} \left[\cos \frac{\pi}{4} - \cos \left(0 \right) \right]$$

Example 8: Evaluate
$$\iint_{R} e^{2x-y} dA$$
, where $R = [0, \ln 2] \times [0, \ln 5]$.

$$0 \le x \le \ln 2$$

$$0 \le y \le \ln 5$$

$$\begin{cases} e^{3x-y} dA = \int_{0}^{\infty} e^{2x} e^{-y} dA \\ e^{-y} dA = \int_{0}^{\infty} e^{2x} e^{-y} dA \end{cases}$$

$$= \left(\int_{0}^{2x} e^{2x} e^{-y} dA - \int_{0}^{\infty} e^{-$$

Example 9: Evaluate
$$\iint_{R} (y \sin(xy)) dA$$
, where $R = [0,2] \times [0,\pi]$.

$$\iint_{R} y \sin(xy) dy dx \quad \text{or} \quad \iint_{R} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} u \sin(xy) dx \quad du$$

$$\lim_{R \to \infty} \frac{1}{2} \sin(xy) dx \quad dx$$

Theorem: If $f(x,y) \ge 0$ and f is continuous on the rectangle R, then the volume V of the solid that lies above R and under the surface f(x,y) is

$$V = \iint_R f(x, y) \, dA$$

Example 10: Evaluate the double integral and identify it as the volume of a solid.

$$\iint_{R} (3-x) dA, R = \{(x,y)|0 \le x \le 3, 0 \le y \le 8\}$$

$$if \begin{cases} o \le x \le 3 \\ o \le y \le 8 \end{cases}$$

$$3-x \ge 0$$

$$0 \le y \le 8,$$

$$V = \iint_{R} (3-x) dA = \int_{0}^{3} \int_{0}^{8} (3-x) dy dx$$

$$= \int_{0}^{3} (3-x) dx \int_{0}^{8} dy$$

$$= \left(3x - \frac{x}{2}\right) \left[\frac{3}{0}\right] y \left[\frac{8}{0}\right]$$

$$= \left(9 - \frac{9}{2}\right) \left(\frac{8}{0}\right)$$

Example 11: Find the volume of the solid S that is bounded by the paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2 and the three coordinate planes.

