Section 15.2 Double Integrals over General Regions

For single integrals, the region over which we integrate is always an interval $[a, b]$. For double integrals, we want to be able to integrate not just over rectangles $[a, b] \times[c, d]$ but also over regions D of a more general shape. Suppose D is a bounded region, which means that D can be enclosed in a rectangular region.

There are two types of plane regions:
Type I: A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$.

If f is continuous on a type I region $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Type II: A plane region D is said to be of type II if it lies between the graphs of two continuous functions of y, that is $D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$.

If f is continuous on a type II region $D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Example 1: Sketch the region of integration and evaluate $\iint_{D} x \cos y d A$ where D is the region bounded by $y=0, y=x^{2}$ and $x=2$.

Example 2: Sketch the region of integration and evaluate $\int_{0}^{2} \int_{\sqrt{x}}^{3}\left(x^{2}+y\right) d y d x$.

Example 3: Sketch the region of integration and evaluate $\int_{0}^{1} \int_{x-1}^{0} \frac{2 y}{x+1} d y d x$.

Example 4: Sketch the region of integration and evaluate $\iint_{D}\left(x^{2}-2 x y\right) d A$, where $D=\{(x, y) \mid 0 \leq x \leq 1, \sqrt{x} \leq y \leq 2-x\}$.

Example 5: Evaluate $\iint_{D}\left(x^{2}+y^{2}\right) d A$, where
$D=\left\{(x, y) \mid 0 \leq x \leq 2, x^{2} \leq y \leq 2 x\right\}$ as both a type I and type II region.

Example 6: Set up but do not evaluate a type II integral for $\iint_{D}\left(y^{2}-x\right) d A$, where D is the region bounded by $x=y^{2}$ and $x=3-2 y^{2}$.

Example 7: Set up but do not evaluate both a type I and type II integral for $\iint_{D} y e^{x} d A$, where D is the triangular region with vertices $(0,0),(2,4)$ and $(6,0)$.

Example 8: Sketch the region of integration and change the order of integration.
(i) $\int_{0}^{\pi / 2} \int_{0}^{\sin x} f(x, y) d y d x$
(ii) $\int_{0}^{1} \int_{y^{2}}^{2-y} f(x, y) d x d y$

Example 9: Evaluate $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x$

Theorem: If $f(x, y) \geq 0$ and f is continuous on the region R, then the volume V of the solid that lies above R and under the surface $f(x, y)$ is

$$
V=\iint_{R} f(x, y) d A
$$

Example 10: Find the volume of the solid under the paraboloid $z=x^{2}+y^{2}$ above the region bounded by $y=x^{2}$ and $x=y^{2}$.

Example 11: Find the volume of the solid under the surface $z=x y$ and above the triangle with vertices $(1,1),(4,1)$ and $(1,2)$.

NOTE: If we integrate the constant function $f(x, y)=1$ over a region D, we get the area of D, that is

$$
\iint_{D} 1 d A=A(D)
$$

