Section 15.3 Double Integrals in Polar Coordinates

In sections 15.1-15.2, we learned how to evaluate integrals of the form $\iint_{R} f(x, y) d A$. We had to determine the order of integration, and $d A$ became either $d x d y$ or $d y d x$. Such integrals are evaluated in rectangular coordinates. In this section, we learn how to integrate over regions that are circular in nature.

Recall: If $P(x, y)$ is a point in the $x y$-plane, we can represent the point P in polar form: Let r be the distance from O to P and let θ be the angle between the polar axis and the line $O P$. Then the point P is represented by the ordered pair (r, θ), and r, θ are called the polar coordinates of P.

Connecting polar coordinates with rectangular coordinates:
a.) $x=r \cos (\theta), y=r \sin (\theta)$
b.) $\tan (\theta)=\frac{y}{x}$, thus $\theta=\arctan \left(\frac{y}{x}\right)$.
c.) $x^{2}+y^{2}=r^{2}$

Example 1: Find the cartesian coordinates of the polar point $\left(2, \frac{2 \pi}{3}\right)$.

Example 2: Find the polar coordinates of the rectangular point $(\sqrt{3},-1)$.

Example 3: Find a cartesian equation for the curve described by $r=2 \sin \theta$.

Example 4: Find a polar equation for $y=1+3 x$.

Double Integrals in Polar Coordinates: We use this method when we are integrating $z=f(x, y)$ over a region R in the $x y$-plane, where R is circular in nature.

Suppose we want to evaluate a double integral $\iint_{R} f(x, y) d A$, where R is the region bounded by the unit circle $x^{2}+y^{2}=1$.
a.) Describe R as a Type I region
b.) Describe R as a Type II region
c.) Describe R as a Polar region

The region shown below is called a polar rectangle. $R=\{(r, \theta) \mid 0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta\}$.

Recall the area of a sector of a circle with radius r and central angle θ is $A=\frac{1}{2} r^{2} \theta$. If we look at the partition of the polar rectangle above, and consider the polar rectangle R, we can find the area of R by subtracting the areas of the two sectors, each of which has central angle $\Delta \theta=\beta-\alpha$. The area of the region R is
$\Delta A=\frac{1}{2} b^{2} \Delta \theta-\frac{1}{2} a^{2} \Delta \theta=\frac{1}{2}(b+a)(b-a) \Delta \theta=r^{*} \Delta r \Delta \theta$, where r^{*} is the average of $r=b$ and $r=a$.
Change to Polar Coordinates in a Double Integral: If f is continuous on a polar rectangle R given by $0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta$, where $0 \leq \beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example 5: Evaluate $\iint_{R} x d A$, where R is the region in the second quadrant bounded by the circle $x^{2}+y^{2}=1$ and $y=0$.

Example 6: Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) d A$, where R is the region bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Example 7: Evaluate $\iint_{R} 7 y d A$, where R is the region in the first quadrant enclosed by the by the circle $x^{2}+y^{2}=9$ and the lines $y=0$ and $y=x$.

Example 8: Evaluate $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} e^{x^{2}+y^{2}} d y d x$ by converting to polar coordinates.

Example 9: Evaluate $\int_{0}^{4} \int_{0}^{\sqrt{4 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ by converting to polar coordinates.

Recall: If $f(x, y) \geq 0$ and f is continuous on the region R, then the volume V of the solid that lies above R and under the surface $f(x, y)$ is $V=\iint_{R} f(x, y) d A$

Example 10: Find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

Example 11: Find the volume of the solid that lies above the $x y$-plane, below the sphere $x^{2}+y^{2}+z^{2}=81$ and inside the cylinder $x^{2}+y^{2}=4$.

Example 12: Find the volume under the cone $z=\sqrt{x^{2}+y^{2}}$ and above the ring $4 \leq x^{2}+y^{2} \leq 25$.

Example 13: Find the volume of the solid bounded by the paraboloids $z=20-x^{2}-y^{2}$ and $z=4 x^{2}+4 y^{2}$.

