Section 15.8 Triple Integrals in Spherical Coordinates

In the the Spherical Coordinate System, a point P is represented by an ordered triple (ρ, θ, ϕ) where $\rho=|O P|$ is the distance from the origin to P, θ is the same angle as cylindrical coordinates, and ϕ is the angle between the positive z axis and the line segment $O P$. Note: $\rho \geq 0$ and $0 \leq \phi \leq \pi$.

The relationship between rectangular and spherical coordinates are $z=\rho \cos \phi, r=\rho \sin \phi$. But $x=r \cos \theta$, $y=r \sin \theta$, so $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$ and $z=\rho \cos \phi$. Also, if we call $P(x, y, z)$, the distance formula gives us $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$.

Example 1: Convert $(-1, \sqrt{3}, 2)$ from rectangular spherical coordinates.

Example 2: Convert ($4, \frac{\pi}{4}, \frac{\pi}{6}$) from spherical to rectangular coordinates.

Example 3: Write the equation in spherical coordinates.
a.) $x^{2}+y^{2}+z^{2}=25$
b.) $z=12-4 x^{2}-4 y^{2}$

Triple Integrals in Spherical Coordinates

Recall we defined the spherical coordinates (ρ, θ, ϕ) where $\rho=|O P|$ is the distance from the origin to P, θ is the same angle as cylindrical coordinates, and ϕ is the angle between the positive z axis and the line segment $O P$. Note: $\rho \geq 0$ and $0 \leq \phi \leq \pi$. Also, the relationship between rectangular and spherical coordinates are $z=\rho \cos \phi, r=\rho \sin \phi$. But $x=r \cos \theta, y=r \sin \theta$, so $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$ and $z=\rho \cos \phi$. Also, if we call $P(x, y, z)$, the distance formula gives us $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$.

In this coordinate system, the equivalent of a box is is a spherical wedge. To integrate over such a system, we have
$\iiint_{E} f(x, y, z) d V=\int_{\theta=c}^{\theta=d} \int_{\phi=\alpha}^{\phi=\beta} \int_{\rho=a}^{\rho=b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta$

Example 4: Evaluate $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x$ by converting to spherical coordinates.

Example 5: Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$ where E is the region between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=9$.

Example 6: Evaluate $\iiint_{E} x z d V$ where E is bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$.

Example 7: Use spherical coordinates to find the volume of the part of the sphere $\rho \leq 4$ that lies between the cones $\phi=\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$.

Example 8: Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$ plane and below the cone $z=\sqrt{x^{2}+y^{2}}$.

