Section 16.1 Vector Fields

Definition: A vector field in two dimension is a function \mathbf{F} that assigns to each point (x, y) in $D \subset \mathbb{R}^{2}$ a two dimensional vector, $\mathbf{F}(x, y)$.

In two dimension, the vector field lies entirely in the $x y$ plane.
A few vector fields in \mathbb{R}^{2} :

Definition: A vector field in three dimension is a function \mathbf{F} that assigns to each point (x, y, z) in $D \subset \mathbb{R}^{3}$ a three dimensional vector, $\mathbf{F}(x, y, z)$.

In three dimension, the vector field is in space.
A vector field in \mathbb{R}^{3} :

In order to match \mathbf{F} with it's vector field, choose a several points, (x, y), in each quadrant, and look at the direction of $\mathbf{F}(x, y)$. Often times, it is a process of elimination.

Example 1: Which of the following is the vector field for $\mathbf{F}(x, y)=\langle 2 x,-7\rangle$?
a.)

b.)

c.)

Recall from chapter 14: The gradient of a function $f(x, y)$ is $\nabla f=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$. Thus we can now think of the gradient as being a vector field.

Example 2: Find the gradient of $f(x, y)=\sqrt{x^{2}+y^{2}}$.

Example 3: Find the gradient of $f(x, y, z)=x \ln (y-z)$.

