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Section 16.1 Vector Fields

Definition: A vector field in two dimension is a function F that assigns to each point (x,4) in D € IR? a
two dimensional vector, F(z, ).

In two dimension, the vector field lies entirely in the xy plane.

A few vector fields in IR2:
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Definition: A vector field in three dimension is a function F that assigns to each point (z,y, z) in D C IR®
a three dimensional vector, F(z,y, 2).

In three dimension, the vector field is in space.

A vector field in IR?:
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In order to match F with it’s vector field, choose a several points, (z,y), in each quadrant, and look at the
direction of F(x,y). Often times, it is a process of elimination.

Example 1: Which of the following is the vector field for F(z,y) = {2z, —7)7
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Recall from chapter 14: The gradient of a function f(x,y) is V f = (fz(z,v), fy(z,y)).{ Thus we can now
think of the gradient as being a vector field. ——

Example 2: Find the gradient of f(z,y) = /2% + y°. @ We Ca \ ; (7( (j\>
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Example 3: Find the gra.dlent of flz,y,z) =zn(y — 2)
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