Section 16.2 Line Integrals

Recall from Calculus 2 that the arc length of a curve defined parametrically by
$x=x(t), y=y(t), a \leq t \leq b$ is $L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$.
In this section, we will define an integral that is similar to a single integral except that instead of integrating a function $f(x)$ along an interval $[a, b]$, we will integrate a surface $f(x, y)$ over a curve C in the $x y$-plane defined parametrically by $\mathbf{r}(\mathbf{t})=\langle x(t), y(t)\rangle$. These integrals are called line integrals.

Instead of partitioning along the x-axis, we are partitioning the curve C defined parametrically by $x=x(t)$, $y=y(t), a \leq b \leq b$. Thus the length of each 'sub arc' is approximitely $\Delta s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$.

Thus the area of a typical polygon is is $f(x, y) * \Delta s$.

If we define the norm of the partition $\|P\|$ to be the length of the smallest subarc, then The line integral of \mathbf{f} along \mathbf{C} is $\int_{C} f(x, y) d s=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$, if the limit exists.

Definition: If f is defined on a smooth curve C defined as $\mathbf{r}(t)=\langle x(t), y(t)\rangle$, then the line integral of \mathbf{f} along \mathbf{C} is

$$
\int_{C} f(x, y) d s=\int_{a}^{b}\left(f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b}\left(f(x(t), y(t))\left|\mathbf{r}^{\prime}(t)\right| d t\right.\right.
$$

When $f(x, y) \geq 0$, the line integral of f along C represents the area of one side of the "fence" or "curtain" whose base is C and whose height at any point on the curve is $f(x, y)$.

Note: For these integrals, the orientation of the curve, which direction is is traversed, is important. If C and $-C$ represent traversing the same curve but in different directions, then
$\int_{-C} f(x, y) d x=-\int_{C} f(x, y) d x$.

Before we begin, since the parametrization is not always given explicitly, let's practice parameterizing curves.
(i) Parameterize the curve $y=x^{3}$, from the point $(0,0)$ to the point $(2,8)$ in two different ways.
(ii) Parameterize the line passing going from the point $(2,4)$ towards the point $(6,3)$.
(iii) Parameterize the circle $x^{2}+y^{2}=9$ in the first quadrant, orientated clockwise.

Example 1: $\int_{C} y d s$, where C is defined as $\mathbf{r}(t)=\left\langle 2 t, t^{3}\right\rangle, 0 \leq t \leq 1$.

Example 2: $\int_{C}\left(x^{2}+y\right) d s$ where C consists of the line segment from the point $(2,8)$ to $(0,15)$.

Definition: If C is a piecewise-smooth curve, that is C is made up a collection of smooth curves where one curve ends then the next curve begins, then the line integral of f along C is defined to be the sum of the integrals of f along each smooth piece of C.

Example 3: Set up but do not evaluate $\int_{C}\left(2+x^{2} y\right) d s$, where C is the arc of the curve $y=x^{4}$ from $(0,0)$ to $(2,16)$ and then the line segment from the point $(2,16)$ to the point $(3,7)$.

Example 4: $\int_{C}\left(x^{2} y\right) d s$, where C is the top half of the circle $x^{2}+y^{2}=4$, oriented counterclockwise.

Definition: Let C be a smooth curve defined by the parametric equations $x=x(t), y=y(t)$ for $a \leq t \leq b$. The line integral of \mathbf{f} along C with respect to x is $\int_{C} f(x, y) d x=\int_{a}^{b}\left(f(x(t), y(t)) x^{\prime}(t) d t\right.$. The line integral of \mathbf{f} along C with respect to y is $\int_{C} f(x, y) d y=\int_{a}^{b}\left(f(x(t), y(t)) y^{\prime}(t) d t\right.$
Example 5: Evaluate $\int_{C} y^{2} d x+x d y$, where C is decribed by $\mathbf{r}(t)=\left\langle e^{t}, 2 e^{2 t}\right\rangle, 0 \leq t \leq 2$.

Definition: If C is a piecewise-smooth curve, that is C is made up a collection of smooth curves where one curve ends then the next curve begins, then the line integral of f along C is defined to be the sum of the integrals of f along each smooth piece of C.

Example 6: Evaluate $\int_{C} y^{2} d x+x d y$, where C is the arc of the parabola $x=4-y^{2}$ from $(-5,-3)$ to $(3,1)$.

Line Integrals in Space:

Let $f(x, y, z)$ be a function defined on a smooth curve C defined by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$. The line integral of f along C is
$\int_{C} f(x, y, z) d s=\int_{a}^{b}\left(f(x(t), y(t), z(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{a}^{b}\left(f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2} d t}\right.\right.$
Example 7: $\int_{C} x y^{2} z^{2} d s$ where C is the line segment going from $(1,1,0)$ to $(2,3,1)$.

Definition: Let C be a smooth curve defined by the parametric equations $x=x(t), y=y(t), z=z(t)$ for $a \leq$ $t \leq b$. The line integral of \mathbf{f} along C with respect to x is $\int_{C} f(x, y, z) d x=\int_{a}^{b}\left(f(x(t), y(t), z(t)) x^{\prime}(t) d t\right.$. The line integral of \mathbf{f} along C with respect to y is $\int_{C} f(x, y, z) d y=\int_{a}^{b}\left(f(x(t), y(t), z(t)) y^{\prime}(t) d t\right.$. The line integral of \mathbf{f} along C with respect to z is $\int_{C} f(x, y, z) d z=\int_{a}^{b}\left(f(x(t), y(t), z(t)) z^{\prime}(t) d t\right.$.

Example 8: Evaluate $\int_{C} y d z+z d y+x d x$ where $C: x=t^{4}, y=t^{3}, z=t^{4}, 0 \leq t \leq 1$.

Line Integrals over vector fields: Suppose now are moving a particle along a curve C through a vector (force) field, \mathbf{F}. We define the line integral of \mathbf{F} along \mathbf{C} to be $\int_{c} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b}\left(\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t\right.$
Example 9: Find $\int_{c} \mathbf{F} \cdot d \mathbf{r}, C: \mathbf{r}(\mathbf{t})=\left\langle t, t^{2}, t^{4}\right\rangle, 0 \leq t \leq 1$, and $\mathbf{F}(x, y, z)=\left\langle x, z^{2},-4 y\right\rangle$.

Think of this as moving a particle through a bunch of 'forces' with 'magnitudes', so we must work against the forces in order to move the particle along the curve C. Thus the line integral of \mathbf{F} along C represents the work done in moving the object along a curve through a force field.

Definition: Let \mathbf{F} be a continuous vector (force) field defined on a smooth curve C given by a vector function $\mathbf{r}(\mathbf{t}), a \leq t \leq b$. The work W done in moving an object along a curve C given by $\mathbf{r}(\mathbf{t})=\langle x(t), y(t), z(t)\rangle$ is

$$
W=\int_{c} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b}\left(\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t\right.
$$

Example 10: Find the work done by the force field $\mathbf{F}(x, y)=\left\langle x^{2}, x y\right\rangle$ in moving an object counterclockwise around the right half of the circle $x^{2}+y^{2}=4$.

Example 11: Find the work done by the force field $\mathbf{F}(x, y, z)=\langle x+y, x+z, y+z\rangle$ in moving an object from the point $(2,2,4)$ to the point $(4,5,8)$.

