Section 16.3 Fundamental Theorem for Line Integrals

In section 16.2, we learned how to find a line integral over a vector field \mathbf{F} along a curve C that is parametrized by $\mathbf{r}(t), a \leq t \leq b: \int_{c} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t$.
Example 1: Suppose we are moving a particle from the point $(0,0)$ to the point $(2,4)$ in a force field $\mathbf{F}(x, y)=\left\langle y^{2}, x\right\rangle$. Find $\int_{c} \mathbf{F} \cdot d \mathbf{r}$ where:
a.) The particle travels along the line segment from $(0,0)$ to $(2,4)$.
b.) The particle travels along the curve $y=x^{2}$ from $(0,0)$ to $(2,4)$.

Note: Although the end points are the same, the value of the line integral is different because the paths are different. In this section, we will learn under what conditions the line integral is independent of the path taken.
Definition: If \mathbf{F} is a continuous vector field, we say that $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path if and only if $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ for any two paths C_{1} and C_{2} with the same starting and ending points. In other words, the line integral is the same no matter what path you travel on as long as the endpoints are the same.

Definition: A vector field \mathbf{F} is called a conservative vector field if it is the gradient of some scalar funtion f, that is there exists a function f so that $\mathbf{F}=\nabla f$. We call f the potential function.

Example 2. Consider $f(x, y)=x^{2} y-y^{3}$. Find the gradient and explain why it is conservative. What is the potential function?

Recall the Fundamental Theorem of Calculus tells us that $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Since $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$, we can think of the potential function, f, as some sort of antiderivative of ∇f. Hence $\int \mathbf{F} \cdot d \mathbf{r}=\int \nabla f \cdot d \mathbf{r}$.

Fundamental Theorem for Line Integrals: Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \leq t \leq b$. Let \mathbf{F} be a conservative vector field. Let f be a differentiable function of two or three variables whose gradient vector, ∇f, is continuous on C. Then

$$
\int_{c} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

Note: Line integrals of conservative vectors fields are independent of path because in a conservative vector field, the line integral is computed by only using the endpoints of the domain! Therefore, if we are in a conservative vector field, the line integral along a curve C in that vector field will be the same no matter what curve we travel across that connects the endpoints together. WHICH MEANS WE DON'T EVEN NEED TO PARAMETERIZE THE CURVE!

Note: If \mathbf{F} is a conservative vector field and C is a closed path (one in which the starting point and ending point is the same), then $\int_{c} \mathbf{F} \cdot d \mathbf{r}=0$. Why?

Example 3: Let $f(x, y)=3 x+x^{2} y-y x^{2}$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\nabla f$ and C is the curve given by $\mathbf{r}(t)=\left\langle 2 t, t^{2}\right\rangle, 1 \leq t \leq 2$.

Question: How do we determine if a vector field is conservative, and if so, how do we find the potential function? The 'test for conservative' we use depends on whether \mathbf{F} is in \mathbb{R}^{2} or \mathbb{R}^{3}.

Theorem: $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle=P \mathbf{i}+Q \mathbf{j}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, if and only if $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$. Note: This above criteria to determine if a vector field is conservative works only for \mathbb{R}^{2}.

Short proof:

Example 4: Is $\mathbf{F}(x, y)=\left\langle 3 x^{2}-4 y, 4 y^{2}-2 x\right\rangle$ a conservative vector field? If so, find a function f so that $\mathbf{F}=\nabla f$.

Example 5: Is $\mathbf{F}(x, y)=\langle x+y, x-2\rangle$ a conservative vector field? If so, find a function f so that $\mathbf{F}=\nabla f$.

Example 6: Given $\mathbf{F}(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}\right\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve given by $\mathbf{r}(t)=\left\langle t^{3}+2 t^{2}-t, 3 t^{4}-t^{2}\right\rangle, 0 \leq t \leq 2$.

Example 7: Let $\mathbf{F}(x, y)=\left\langle 3+2 x y^{2}, 2 x^{2} y\right\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the arc of the hyperbola $y=\frac{1}{x}$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$.

Example 8: Given $\mathbf{F}(x, y)=\left\langle 3 x^{2}-4 y, 4 y^{2}-2 x\right\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve given by $\mathbf{r}(t)=\left\langle t^{3}+1, t^{2}\right\rangle, 0 \leq t \leq 1$.

Example 9: Given that $\mathbf{F}=\left\langle 4 x e^{z}, \cos (y), 2 x^{2} e^{z}\right\rangle$ is conservative and $\mathbf{r}(t)=\langle\sin (t), t, \cos (t)\rangle$, compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $0 \leq t \leq \frac{\pi}{2}$. Note: We had to tell you \mathbf{F} is conservative since we have not yet learned the testing criteria for conservativness in \mathbb{R}^{3}

