Section 16.4 Greens Theorem

We learned in section 16.2 how to find a line integral $\int_{C} f(x, y) d x+g(x, y) d y$ over a curve C parameterized by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$.

Example 1: Evaluate $\int_{C} y^{2} d x+x d y$, where $C: \mathbf{r}(t)=\left\langle t^{2}, 2 t\right\rangle, 0 \leq t \leq 2$.

In this section, we will learn how to compute a line integral over a closed curve.
Defintion: A closed curve is a curve in which its terminal point coincides with its initial point. A simple closed curve is a closed curve that does not cross itself anywhere between its endpoints.
Note: If we are computing a line integral over a closed curve, we write \oint_{C} instead of \int_{C}.
Green's Theorem: Let C be a positively oriented (counterclockwise) piecewise-smooth simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$
\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

This says that the line integral over a simple closed curve C is equal to a double integral over the area of the region D the curve C encloses.

Note: We only use Green's theorem if we are on a positively oriented closed curve. If the curve is not positively oriented, then change the sign of the line integral. If not explicitly stated, assume counterclockwise orientation.

Example 2: Evaluate $\oint_{C} x^{3} d x+x y d y$ where C is the triangular path from $(0,0)$ to $(1,1)$ to $(0,1)$ then back to $(0,0)$. Assume positive orientation.

Example 3: Evaluate $\oint_{C}\left(y^{2}+\cos x\right) d x+(x-\arctan y) d y$ where C is the curve that encloses the region bounded by $y=4-x^{2}$ and $y=0$. Assume positive orientation.

Example 4: Evaluate $\oint_{C} x^{2} y d x+y^{3} d y$ where C is the line segment from $(-1,0)$ to $(1,0)$ and then around the top half of the circle $x^{2}+y^{2}=1$.

What does Green's theorem look like if $\mathbf{r}(t)$ is in a vector field? Suppose we are asked to find $\int_{c} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{r}(t)$ is a closed curve.
Let $\mathbf{F}=\langle P, Q\rangle$ be a vector field and let C be a simple closed curve defined by $\mathbf{r}(t)=\langle x(t), y(t)\rangle, a \leq t \leq b$. Then $d \mathbf{r}=\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t) d t, y^{\prime}(t) d t\right\rangle=\langle d x, d y\rangle$, and therefore $\mathbf{F} \cdot d \mathbf{r}=\langle P, Q\rangle \cdot\langle d x, d y\rangle=P d x+Q d y$. Thus if we are on a simple closed curve, Green's theorem gives

$$
\int_{c} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Question: What is the work done if we are moving a particle along a closed curve, $\mathbf{r}(t)$, in a conservative vector field?

Example 5: Suppose a particle travels one revolution clockwise around the unit circle under the force field $\mathbf{F}(x, y)=\left\langle e^{x}-y^{3}, \cos (y)+x^{3}\right\rangle$. Find the work done.

