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Section 16.5 Curl and Divergence

In this section, we define two operations on vector fields. These operations are called Divergence and
Curl, which are characteristics of how fluid/flow is behaving in a small neighborhood around a given point.

Definition: Divergence is a measurement of how much fluid/flow enters the neighborhood around a point
P compared to how much fluid/flow exits the neighborhood around P .

If more fluid/flow enters the neighborhood around P than leaves the neighborhood around P , the divergence
will be negative(gaining fluid/flow in that neighborhood).

If the same amount of fluid/flow enters the neighborhood around P as leaving it, the divergence will be
zero.

If more fluid/flow leaves the neighborhood around P than enters the neighborhood around P , the divergence
will be positive (losing fluid in that neighborhood). In this case, we say the vector field is divergent at the
point P .

Definition: The curl of F measures the tendency of the fluid/flow to rotate in a vector field of a neighbor-
hood around that point.

Think of circulation as being the amount of pushing, twisting, or turning around the point P . We can
visualize curl by the paddle wheel illustration shown below.
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Definition: The del operator, denoted by ∇, is defined as ∇ =

〈
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. Note: this is not the

same as the gradient!!

Definition: Divergence and Curl If F = 〈P,Q,R〉 is a a vector field on ℜ3 and the partial derivatives of P ,
Q, and R all exist, then

a.) The divergence of F is ∇ · F =
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b.) The curl of F is the vector field on ℜ3 defined by curl F = ∇× F.

curl F = ∇× F =
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Example 1: Find the divergence of F(x, y, z) =
〈

x2y, yz2, zx2
〉

at the point (1,−1, 1), (1, 1, 1), and (1,−5, 1).
Interpret your answer.

Example 2: Find the divergence and curl of F =
〈

xy, xz, xyz2
〉

.

2



c©Amy Austin, April 12, 2020

Theorem: If F is a vector field defined on all of ℜ3 whose component functions have continuous partial
derivatives and curl F = 0, then F is a conservative vector field. This gives us a way to determine whether
a vector function on ℜ3 is conservative.

For recall purposes, the ‘conservative test’ on ℜ2: F(x, y) = 〈P (x, y), Q(x, y)〉 = P i + Qj is a conservative

vector field if and only if
∂Q

dx
=

∂P

dy

Example 5: Determine if the vector field is conservative. F =
〈

y2z3, 2xyz3, 4xy + z
〉

. If it is conservative,
find the potential function f .

Example 6: If F = 〈x, ey sin z, ey cos z〉, Find

∫

C

F · dr where r(t) =
〈

t4, t, 2t2
〉

, for 1 ≤ t ≤ 2
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