MATH 151, FALL 2015 SAMPLE EXAM II

PART I: Multiple Choice: 3 points each

- 1. Find the derivative of $f(x) = \sin(\tan x)$
 - (a) $(\tan x)(\sec x)\cos(\tan x)$
 - (b) $(\sec^2 x) \cos(\tan x)$
 - (c) $-(\sec^2 x)\cos(\tan x)$
 - (d) $\sin(\sec^2 x)$
 - (e) $(\sec x)\cos(\tan x)$

3. If
$$xe^{y} = 4$$
, find $\frac{dy}{dt}$ when $y = 0$ given that $\frac{dx}{dt} = 10$.
(a) $-\frac{1}{4}$
(b) $-\frac{5}{2}$
(c) $\frac{5}{2}$
(d) $\frac{1}{8}$
(e) $\frac{1}{4}$

4.
$$\lim_{x \to 4^{-}} \left(\frac{1}{e}\right)^{\frac{1}{x-4}} =$$
(a) e
(b) 0
(c) $\frac{1}{e}$
(d) $-\infty$
(e) ∞

- 5. Consider the parametric curve $x(t) = t^4 + 1$ and $y(t) = \cos\left(\frac{\pi}{2}t\right)$. Find the slope of the tangent line at the point (2,0).
 - (a) $-\frac{\pi}{8}$ (b) $-\frac{1}{4}$ (c) $-\frac{8}{\pi}$ (d) 0 (e) $-\frac{\pi}{4}$

6. If $f(x) = x g(\sqrt{x})$, then f'(x) =(a) $\frac{1}{2}\sqrt{x} g'(\sqrt{x})$ (b) $\frac{1}{2}\sqrt{x} g'(\sqrt{x}) - g(\sqrt{x})$ (c) $-\frac{1}{2}\sqrt{x} g'(\sqrt{x}) + g(\sqrt{x})$ (d) $\frac{1}{2}\sqrt{x} g'(\sqrt{x}) + g(\sqrt{x})$ (e) $g(\sqrt{x})$

7. The graph of the curve $y = x + \frac{1}{3}\cos(3x)$ has a horizontal tangent at x =

- (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

- (e) π

8. If
$$f(x) = e^{\tan x}$$
, then $f''\left(\frac{\pi}{4}\right) =$
(a) $4e$
(b) $2\sqrt{2}e$
(c) $6e$

- (d) $\sqrt{2}e$
- (e) 8*e*

9. Find
$$\frac{dy}{dx}$$
 at the point $\left(\frac{\pi}{2}, \pi\right)$ for $x \sin(y) - y \cos(2x) = 2x$.
(a) $\frac{4}{2 + \pi}$
(b) $\frac{4\pi}{2 - \pi}$
(c) $\frac{4\pi}{2 + \pi}$
(d) $\frac{4}{2 - \pi}$

(e) $\frac{2}{2+\pi}$

10. Find the point of intersection of the curves $\mathbf{r_1}(t) = \langle 1 - t, 3 + t^2 \rangle$ and $\mathbf{r_2}(w) = \langle w - 2, w^2 \rangle$.

- (a) (1,2)
- (b) (0,2)
- (c) (0,4)
- (d) (1,1)
- (e) (-1,1)

11. At what point on the curve $y = \frac{1}{(x+1)^2}$ is the tangent line parallel to 4y = x + 8?

- (a) $\left(-6, \frac{1}{25}\right)$ (b) $\left(1, \frac{1}{4}\right)$ (c) $\left(-3, \frac{1}{4}\right)$ (d) $\left(-9, \frac{1}{64}\right)$
- (e) $\left(3, \frac{1}{16}\right)$

12. Find the equation of the tangent line to the curve x = 1 - t, $y = 2 - t^2$ at the point (2, 1).

- (a) y = 4x 7
- (b) y = 2x 3
- (c) y = -2x + 5
- (d) y = -x + 3
- (e) y = -4x + 7

- 13. A particle moves according to the equation of motion $s(t) = 2t^3 9t^2 + 12t + 5$, where t is measured in seconds and s(t) is measured in feet. When is the particle moving in the positive direction?
 - (a) (1,2)
 - (b) $(-\infty, 1) \cup (2, \infty)$
 - (c) $(2,\infty)$
 - (d) $[0,1) \cup (2,\infty)$
 - (e) $(0,1) \cup (2,\infty)$

14. Find the quadratic approximation for $f(x) = \sqrt[3]{x+1}$ at x = 7.

- (a) $Q(x) = 2 + \frac{1}{12}(x-7) \frac{1}{144}(x-7)^2$
- (b) $Q(x) = 2 + \frac{1}{12}(x-7) \frac{1}{288}(x-7)^2$
- (c) $Q(x) = 2 + \frac{1}{12}(x-7) + \frac{1}{288}(x-7)^2$
- (d) $Q(x) = 2 + \frac{1}{12}(x-7) + \frac{1}{144}(x-7)^2$
- (e) $Q(x) = 2 + \frac{1}{12}(x-7) + \frac{1}{72}(x-7)^2$

15. If $\mathbf{r}(\mathbf{t}) = \langle 2\cos t, 3\sin t \rangle$. Describe the direction of the curve as t increases.

- (a) Clockwise around the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1.$
- (b) Counterclockwise around the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- (c) Clockwise around the curve $(x-2)^2 + (y-3)^2 = 1$.
- (d) Counterclockwise around the curve $(x-2)^2 + (y-3)^2 = 1$.
- (e) Clockwise around the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$.

PART II WORK OUT

Directions: Present your solutions in the space provided. *Show all your work* neatly and concisely and *Box your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.

- 16. Consider the function $g(x) = \sin(x)$.
 - a.) (6 pts) Find the linear approximation of g(x) for values of x near 30°.

b.) (5 pts) Use your answer above to approximate $\sin(29^\circ)$.

17. Consider $x = \sin(2t), y = 2\cos(2t) + \sin(2t)$.

(a) (6 pts) Find the equation of the tangent line to the curve given by the parametric equations at the point on the curve where $t = \pi/8$.

(b) (5 pts) Find any point on the curve were the tangent line is vertical. Support your answer.

18. Suppose we have a circular cone with height 1 foot and radius 3 feet, vertex at the bottom. Suppose further that a solution is being poured into the cone at a rate of 0.5 cubic feet per minute. How fast is the height of the solution increasing when the volume of the solution is $\frac{3\pi}{8}$ cubic feet?

19. (a) (3 pts) Show by means of a sketch that there are two lines tangent to the parabola $y = x^2 + x$ that pass through the point (2, -3).

(b) (8 pts) Find an equation of each of these tangent lines.

20. Consider
$$f(x) = \begin{cases} ax^2 + 4cx + 3 & \text{if } x \le -1 \\ cx - 6 & \text{if } x > -1 \end{cases}$$

(a) (8 pts) Find the values of a and c that make f(x) differentiable everywhere.

(b) (3 pts) For the values of a and c found above, find $f^\prime(x)$

21. Suppose g is the inverse of f and f(2) = 3, f'(2) = 7, f(3) = 4 and $f'(3) = \frac{1}{2}$. Find g'(3).

22. Suppose g is the inverse of f. Find g'(4) if $f(x) = 3 + x + e^x$.