MATH 151, FALL 2015

SAMPLE EXAM II

PART I: Multiple Choice: 3 points each

1. Find the derivative of $f(x)=\sin (\tan x)$
(a) $(\tan x)(\sec x) \cos (\tan x)$
(b) $\left(\sec ^{2} x\right) \cos (\tan x)$
(c) $-\left(\sec ^{2} x\right) \cos (\tan x)$
(d) $\sin \left(\sec ^{2} x\right)$
(e) $(\sec x) \cos (\tan x)$
2. $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{\sin 2 \theta}=$
(a) $\frac{3}{2}$
(b) $\frac{2}{3}$
(c) 1
(d) 0
(e) ∞
3. If $x e^{y}=4$, find $\frac{d y}{d t}$ when $y=0$ given that $\frac{d x}{d t}=10$.
(a) $-\frac{1}{4}$
(b) $-\frac{5}{2}$
(c) $\frac{5}{2}$
(d) $\frac{1}{8}$
(e) $\frac{1}{4}$
4. $\lim _{x \rightarrow 4^{-}}\left(\frac{1}{e}\right)^{\frac{1}{x-4}}=$
(a) e
(b) 0
(c) $\frac{1}{e}$
(d) $-\infty$
(e) ∞
5. Consider the parametric curve $x(t)=t^{4}+1$ and $y(t)=\cos \left(\frac{\pi}{2} t\right)$. Find the slope of the tangent line at the point $(2,0)$.
(a) $-\frac{\pi}{8}$
(b) $-\frac{1}{4}$
(c) $-\frac{8}{\pi}$
(d) 0
(e) $-\frac{\pi}{4}$
6. If $f(x)=x g(\sqrt{x})$, then $f^{\prime}(x)=$
(a) $\frac{1}{2} \sqrt{x} g^{\prime}(\sqrt{x})$
(b) $\frac{1}{2} \sqrt{x} g^{\prime}(\sqrt{x})-g(\sqrt{x})$
(c) $-\frac{1}{2} \sqrt{x} g^{\prime}(\sqrt{x})+g(\sqrt{x})$
(d) $\frac{1}{2} \sqrt{x} g^{\prime}(\sqrt{x})+g(\sqrt{x})$
(e) $g(\sqrt{x})$
7. The graph of the curve $y=x+\frac{1}{3} \cos (3 x)$ has a horizontal tangent at $x=$
(a) $\frac{\pi}{12}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
(e) π
8. If $f(x)=e^{\tan x}$, then $f^{\prime \prime}\left(\frac{\pi}{4}\right)=$
(a) $4 e$
(b) $2 \sqrt{2} e$
(c) $6 e$
(d) $\sqrt{2} e$
(e) $8 e$
9. Find $\frac{d y}{d x}$ at the point $\left(\frac{\pi}{2}, \pi\right)$ for $x \sin (y)-y \cos (2 x)=2 x$.
(a) $\frac{4}{2+\pi}$
(b) $\frac{4 \pi}{2-\pi}$
(c) $\frac{4 \pi}{2+\pi}$
(d) $\frac{4}{2-\pi}$
(e) $\frac{2}{2+\pi}$
10. Find the point of intersection of the curves $\mathbf{r}_{1}(t)=\left\langle 1-t, 3+t^{2}\right\rangle$ and $\mathbf{r}_{\mathbf{2}}(w)=\left\langle w-2, w^{2}\right\rangle$.
(a) $(1,2)$
(b) $(0,2)$
(c) $(0,4)$
(d) $(1,1)$
(e) $(-1,1)$
11. At what point on the curve $y=\frac{1}{(x+1)^{2}}$ is the tangent line parallel to $4 y=x+8$?
(a) $\left(-6, \frac{1}{25}\right)$
(b) $\left(1, \frac{1}{4}\right)$
(c) $\left(-3, \frac{1}{4}\right)$
(d) $\left(-9, \frac{1}{64}\right)$
(e) $\left(3, \frac{1}{16}\right)$
12. Find the equation of the tangent line to the curve $x=1-t, y=2-t^{2}$ at the point $(2,1)$.
(a) $y=4 x-7$
(b) $y=2 x-3$
(c) $y=-2 x+5$
(d) $y=-x+3$
(e) $y=-4 x+7$
13. A particle moves according to the equation of motion $s(t)=2 t^{3}-9 t^{2}+12 t+5$, where t is measured in seconds and $s(t)$ is measured in feet. When is the particle moving in the positive direction?
(a) $(1,2)$
(b) $(-\infty, 1) \cup(2, \infty)$
(c) $(2, \infty)$
(d) $[0,1) \cup(2, \infty)$
(e) $(0,1) \cup(2, \infty)$
14. Find the quadratic approximation for $f(x)=\sqrt[3]{x+1}$ at $x=7$.
(a) $Q(x)=2+\frac{1}{12}(x-7)-\frac{1}{144}(x-7)^{2}$
(b) $Q(x)=2+\frac{1}{12}(x-7)-\frac{1}{288}(x-7)^{2}$
(c) $Q(x)=2+\frac{1}{12}(x-7)+\frac{1}{288}(x-7)^{2}$
(d) $Q(x)=2+\frac{1}{12}(x-7)+\frac{1}{144}(x-7)^{2}$
(e) $Q(x)=2+\frac{1}{12}(x-7)+\frac{1}{72}(x-7)^{2}$
15. If $\mathbf{r}(\mathbf{t})=\langle 2 \cos t, 3 \sin t\rangle$. Describe the direction of the curve as t increases.
(a) Clockwise around the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
(b) Counterclockwise around the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
(c) Clockwise around the curve $(x-2)^{2}+(y-3)^{2}=1$.
(d) Counterclockwise around the curve $(x-2)^{2}+(y-3)^{2}=1$.
(e) Clockwise around the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.

PART II WORK OUT

Directions: Present your solutions in the space provided. Show all your work neatly and concisely and Box your final answer. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.
16. Consider the function $g(x)=\sin (x)$.
a.) (6 pts) Find the linear approximation of $g(x)$ for values of x near 30°.
b.) (5 pts) Use your answer above to approximate $\sin \left(29^{\circ}\right)$.
17. Consider $x=\sin (2 t), y=2 \cos (2 t)+\sin (2 t)$.
(a) (6 pts$)$ Find the equation of the tangent line to the curve given by the parametric equations at the point on the curve where $t=\pi / 8$.
(b) (5 pts) Find any point on the curve were the tangent line is vertical. Support your answer.
18. Suppose we have a circular cone with height 1 foot and radius 3 feet, vertex at the bottom. Suppose further that a solution is being poured into the cone at a rate of 0.5 cubic feet per minute. How fast is the height of the solution increasing when the volume of the solution is $\frac{3 \pi}{8}$ cubic feet?
19. (a) (3 pts) Show by means of a sketch that there are two lines tangent to the parabola $y=x^{2}+x$ that pass through the point $(2,-3)$.

(b) (8 pts) Find an equation of each of these tangent lines.
20. Consider $f(x)=\left\{\begin{array}{cc}a x^{2}+4 c x+3 & \text { if } x \leq-1 \\ c x-6 & \text { if } x>-1\end{array}\right.$
(a) (8 pts) Find the values of a and c that make $f(x)$ differentiable everywhere.
(b) (3 pts) For the values of a and c found above, find $f^{\prime}(x)$
21. Suppose g is the inverse of f and $f(2)=3, f^{\prime}(2)=7, f(3)=4$ and $f^{\prime}(3)=\frac{1}{2}$. Find $g^{\prime}(3)$.
22. Suppose g is the inverse of f. Find $g^{\prime}(4)$ if $f(x)=3+x+e^{x}$.

