MATH 151, SUMMER 2016 SAMPLE EXAM III

PART I: Multiple Choice: 3 points each

- 1. Given $f(x) = x^3 \ln x$, find f'(e)
 - (a) *e*
 - (b) $3 + 3e^2$
 - (c) e^2
 - (d) 3e
 - (e) $4e^2$

2.
$$\frac{d}{dx}(\tan^{-1}(x^{2})) =$$
(a)
$$\frac{2x}{1+x^{4}}$$
(b)
$$\frac{2}{1+x^{2}}$$
(c)
$$-2x \csc(x^{2}) \cot(x^{2})$$
(d)
$$2x \tan^{-1}(x^{2}) \sec^{-1}(x^{2})$$
(e)
$$\frac{2x}{1+x^{2}}$$

3. Solve the equation $\ln x + \ln(x+1) = \ln(x+4)$ for x.

- (a) x = 0 and x = 3(b) x = 4
- (c) $x = \pm 2$
- (d) x = 3
- (e) x = 2

4. The graph of the DERIVATIVE of a function is shown below. On which intervals is the original function f concave down?

- (a) $(-\infty, -5)$
- (b) (-5,0)
- (c) (0,4)
- (d) $(4, \infty)$
- (e) none of these intervals
- 5. Circle ALL the critical values of $f(x) = x(x-1)^{\frac{1}{3}}$ NOTE: YOU MAY CIRCLE MORE THAN ONE CHOICE!
 - (a) 0
 - (b) $-\frac{1}{3}$ (c) $\frac{1}{4}$

 - (d) $\frac{3}{4}$
 - (e) 1
- 6. Find the absolute maximum of $f(x) = \sin x + \cos x$ on the interval $\left[0, \frac{\pi}{3}\right]$. (**NOTE**: $\sqrt{2} \approx 1.414$ and $\sqrt{3} \approx 1.73$)
 - (a) 1
 - (b) 2
 - (c) $\sqrt{2}$

(d)
$$\frac{\sqrt{3}+1}{2}$$

(e) $\frac{\pi}{4}$

- 7. The inflection points of $f(x) = x^5 + 10x^4$ occur at which of the following?
 - (a) x = 6 only
 - (b) x = -6 only
 - (c) x = 0, x = -8
 - (d) x = 0, x = -6
 - (e) x = 0, x = 6

8. Which is an antiderivative of $f(x) = 2\sqrt{x} + \frac{1}{x^2}$?

(a)
$$\frac{4}{3}x^{\frac{3}{2}} - \frac{1}{x} + C$$

(b) $\frac{4}{3}x^{\frac{3}{2}} - \ln(x^2) + C$
(c) $\frac{1}{\sqrt{x}} - \frac{2}{x^3} + C$
(d) $\frac{1}{\sqrt{x}} + \ln(x^2) + C$
(e) $\frac{1}{\sqrt{x}} - \frac{1}{x} + C$

9. Given x = 2 is a critical number for $f(x) = x^3 e^{-bx}$, what is b?

(a) $\frac{3}{2}$ (b) 8 (c) $-\frac{1}{2}\ln 8$ (d) $\frac{2}{3}$ (e) 12

10.
$$\tan\left(\arccos\left(\frac{x}{2}\right)\right) =$$
(a) $\frac{x}{\sqrt{x^2 + 4}}$
(b) $-\frac{1}{\sqrt{4 - x^2}}$
(c) $\frac{\sqrt{4 - x^2}}{x}$
(d) $\frac{2}{x^2 + 4}$
(e) $\frac{x}{\sqrt{4 - x^2}}$

PART II WORK OUT

Directions: Present your solutions in the space provided. *Show all your work* neatly and concisely and *Box your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.

12. Find the derivative of

(i) $f(x) = x^{\sec x}$

(ii) $2^{\arcsin x} + \log_2(x^2)$

13. Find $\lim_{x \to 0} (1-x)^{\frac{5}{x}}$

- 14. For $f(x) = x^2 \ln(x)$:
 - a.) Find the domain of f(x).
 - b.) Find $\lim_{x \to 0^+} f(x)$.
 - c.) Find the intervals where f(x) is increasing and decreasing and find all local extrema of f(x)

15. Find the intervals of concavity and inflection point(s) for $f(x) = xe^{4x}$

16. If 1200 square cm of material is available to make a box with a square base, find the largest possible volume of the box.

17. The acceleration of a particle is given by $\mathbf{a}(t) = (1 + e^t)\mathbf{i} + (\cos t)\mathbf{j}$. If the initial velocity is \mathbf{i} and the initial position is \mathbf{j} , find the position of the particle at any time t.

18. A thermometer is taken from a room where the temperature is 75° to the outdoors, where the temperature is 35° . After one minute, the thermometer reads 60° . What is the reading of the thermometer at time t?

19. A bacterial culture starts with 200 bacteria and triples in size every half hour. Assuming exponential growth, how many bacteria are there after 45 minutes?

20. Find the following:

a.)
$$\arccos\left(\frac{1}{2}\right) =$$

b.)
$$\sin\left(\arccos\left(-\frac{4}{5}\right)\right) =$$

c.)
$$\arcsin\left(\sin\left(\frac{5\pi}{6}\right)\right) =$$

- d.) The domain of $\arcsin(4x-5) =$
- 21. You are given a function f, an interval, partition points, and a description of the point x_i^* within the *i*th subinterval. (a) Find ||P||.
 - (b) Sketch the graph of f and the approximating rectangles.
 - (c) Find the sum of the approximating rectangles.

 $f(x) = 16 - x^2$, [0,4], $P = \{0, 1, 2, 3, 4\}$, $x_i^* =$ left endpoint.