Summer 2016 Math 151

Week in Review 2

courtesy: Amy Austin (covering 3.2-3.5)

Section 3.2

(1) Constant rule: If f(x) = c, where c is a constant, then f'(x) = 0.

(2) Power rule: If $f(x) = x^n$, then $f'(x) = nx^{n-1}$

(3) Constant times a function rule:

 $\frac{d}{dx}cf(x) = c\frac{d}{dx}f(x)$

(4) Sum/Difference rule: If $f(x)=g(x)\pm h(x),$ then $f'(x)=g'(x)\pm h'(x)$

- (5) Product rule: If f(x) = g(x)h(x), then f'(x) = g(x)h'(x) + g'(x)h(x)
- (6) Quotient rule: If $f(x) = \frac{g(x)}{h(x)}$, then $f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2}$
- Find the derivative of the following functions.
 (a) q(x) = x⁵ + 8x² 16x + 2 π²
 - (b) $f(t) = (1 \sqrt{t})^2$ (c) $H(s) = \left(\frac{s}{2}\right)^5$ (d) $F(x) = \frac{x - 3x\sqrt{x}}{\sqrt{x}}$ (e) $y = (x^3 - x^2 - 2x + 1)(5x^4 - 20x^3 + 5x + 3)$ (f) $f(u) = \frac{1 - u^2}{1 + u^2}$
- 2. If f(5) = 1, f'(5) = 6, g(5) = -3 and g'(5) = 2, find the value of (fg)'(5).
- 3. Find the equation of the tangent line to the graph of $f(x) = x + \sqrt{x}$ at the point (1, 2).
- 4. At what point on the curve $y = x\sqrt{x}$ is the tangent line parallel to the line 3x y + 6 = 0?

- 5. Show there are two tangent lines to the parabola $y = x^2$ that pass through the point (0, -4). Find the equation of these tangent lines.
- 6. If $f(x) = \begin{cases} x^2 & \text{if } x \leq 2\\ mx+b & \text{if } x > 2 \end{cases}$, find the value of m and b that make f(x) differentiable everywhere.
- 7. If $\vec{\mathbf{r}}(t) = \langle t^2 + 2t, t^3 + 3t^2 \rangle$ is the position of a moving object at time t, where the position is measured in feet and the time in seconds, find the velocity and speed at time t = 1

Section 3.4

8. Find the limit:

(a)
$$\lim_{x \to 0} \frac{\sin x}{3x}$$

(b)
$$\lim_{x \to 0} \frac{\sin 9x}{7x}$$

(c)
$$\lim_{x \to 0} \frac{\sin 8x}{\sin 7x}$$

(d)
$$\lim_{x \to 0} \frac{\tan^2 4x}{x^2}$$

(e)
$$\lim_{x \to 0} \frac{\cos x - 1}{\sin x}$$

Derivatives of Trigonometric Functions:

Function	Derivative
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\csc^2 x$
$\csc x$	$-\csc x \cot x$

9. Find the derivative:

(a)
$$f(x) = \sec^2 x + 4 \tan x + x\sqrt{x}$$

(b) $g(t) = \frac{2\cos t + 1}{\cot t + t}$

10. Find the equation of the tangent line to the graph of $f(x) = 2\sin x$ at $x = \frac{\pi}{3}$.

Section 3.5

<u>Chain Rule</u>: We use the chain rule when we are differentiating a function written as a composition of functions, that is f(x) = g(h(x)). Then f'(x) = g'(h(x))h'(x).

- 11. Find the derivative:
 - (a) $f(x) = \sin(2x) + \cot(5x^2)$
 - (b) $g(t) = \tan(\cos(t))$
 - (c) $h(w) = \sec(\cos(\sin(4w^2)))$

<u>Generalized Power Rule:</u> If $f(x) = (g(x))^n$, then $f'(x) = n (g(x))^{n-1} g'(x)$

12. Find the derivative:

(a)
$$f(x) = \frac{1}{(x^2 + 5x + 4)^{10}}$$

(b) $g(x) = x^3(\sqrt{x} + 5)^3$
(c) $f(x) = \sin(3x) + \sin^3(x)$
(d) $h(t) = \sqrt{\cos(\sin^2 t)}$

- 13. Find the equation of the tangent line to the graph of $f(x) = 8\sqrt{4+3x}$ at x = 4.
- 14. Suppose $w = u \circ v$ and u(0) = 1, v(0) = 2, u'(0) = 3, u'(2) = 4, v'(0) = 5 and v'(2) = 6. Find w'(0).
- 15. If $F(x) = f(\cos x)$, $G(x) = \cos(f(x))$ and $H(x) = [f(\sin x)]^3$, find F'(x) and G'(x) and H'(x).