Summer 2016 Math 151
Week in Review 2
courtesy: Amy Austin
(covering 3.2-3.5)

Section 3.2

(1) Constant rule: If $f(x)=c$, where c is a constant, then $f^{\prime}(x)=0$.
(2) Power rule: If $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$
(3) Constant times a function rule:
$\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)$
(4) Sum/Difference rule: If $f(x)=g(x) \pm h(x)$, then $f^{\prime}(x)=g^{\prime}(x) \pm h^{\prime}(x)$
(5) Product rule: If $f(x)=g(x) h(x)$, then $f^{\prime}(x)=g(x) h^{\prime}(x)+g^{\prime}(x) h(x)$
(6) Quotient rule: If $f(x)=\frac{g(x)}{h(x)}$, then
$f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{(h(x))^{2}}$

1. Find the derivative of the following functions.
(a) $g(x)=x^{5}+8 x^{2}-16 x+2-\pi^{2}$
(b) $f(t)=(1-\sqrt{t})^{2}$
(c) $H(s)=\left(\frac{s}{2}\right)^{5}$
(d) $F(x)=\frac{x-3 x \sqrt{x}}{\sqrt{x}}$
(e) $y=\left(x^{3}-x^{2}-2 x+1\right)\left(5 x^{4}-20 x^{3}+5 x+3\right)$
(f) $f(u)=\frac{1-u^{2}}{1+u^{2}}$
2. If $f(5)=1, f^{\prime}(5)=6, g(5)=-3$ and $g^{\prime}(5)=2$, find the value of $(f g)^{\prime}(5)$.
3. Find the equation of the tangent line to the graph of $f(x)=x+\sqrt{x}$ at the point $(1,2)$.
4. At what point on the curve $y=x \sqrt{x}$ is the tangent line parallel to the line $3 x-y+6=0$?
5. Show there are two tangent lines to the parabola $y=x^{2}$ that pass through the point $(0,-4)$. Find the equation of these tangent lines.
6. If $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq 2 \\ m x+b & \text { if } x>2\end{array}\right.$, find the value of m and b that make $f(x)$ differentiable everywhere.
7. If $\overrightarrow{\mathbf{r}}(t)=\left\langle t^{2}+2 t, t^{3}+3 t^{2}\right\rangle$ is the position of a moving object at time t, where the position is measured in feet and the time in seconds, find the velocity and speed at time $t=1$

Section 3.4

8. Find the limit:
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{3 x}$
(b) $\lim _{x \rightarrow 0} \frac{\sin 9 x}{7 x}$
(c) $\lim _{x \rightarrow 0} \frac{\sin 8 x}{\sin 7 x}$
(d) $\lim _{x \rightarrow 0} \frac{\tan ^{2} 4 x}{x^{2}}$
(e) $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}$

Derivatives of Trigonometric Functions:

Function	Derivative
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\csc ^{2} x$
$\csc x$	$-\csc x \cot x$

9. Find the derivative:
(a) $f(x)=\sec ^{2} x+4 \tan x+x \sqrt{x}$
(b) $g(t)=\frac{2 \cos t+1}{\cot t+t}$
10. Find the equation of the tangent line to the graph of $f(x)=2 \sin x$ at $x=\frac{\pi}{3}$.

Section 3.5

Chain Rule: We use the chain rule when we are differentiating a function written as a composition of functions, that is $f(x)=g(h(x))$. Then $f^{\prime}(x)=$ $g^{\prime}(h(x)) h^{\prime}(x)$.
11. Find the derivative:
(a) $f(x)=\sin (2 x)+\cot \left(5 x^{2}\right)$
(b) $g(t)=\tan (\cos (t))$
(c) $h(w)=\sec \left(\cos \left(\sin \left(4 w^{2}\right)\right)\right)$

Generalized Power Rule: If $f(x)=(g(x))^{n}$, then $f^{\prime}(x)=n(g(x))^{n-1} g^{\prime}(x)$
12. Find the derivative:
(a) $f(x)=\frac{1}{\left(x^{2}+5 x+4\right)^{10}}$
(b) $g(x)=x^{3}(\sqrt{x}+5)^{3}$
(c) $f(x)=\sin (3 x)+\sin ^{3}(x)$
(d) $h(t)=\sqrt{\cos \left(\sin ^{2} t\right)}$
13. Find the equation of the tangent line to the graph of $f(x)=8 \sqrt{4+3 x}$ at $x=4$.
14. Suppose $w=u \circ v$ and $u(0)=1, v(0)=2, u^{\prime}(0)=3$, $u^{\prime}(2)=4, v^{\prime}(0)=5$ and $v^{\prime}(2)=6$. Find $w^{\prime}(0)$.
15. If $F(x)=f(\cos x), G(x)=\cos (f(x))$ and $H(x)=$ $[f(\sin x)]^{3}$, find $F^{\prime}(x)$ and $G^{\prime}(x)$ and $H^{\prime}(x)$.

