Summer 2016 Math 151

Week in Review 4

courtesy: Amy Austin
(covering 4.8-5.5)

Section 4.8

1. Find the following limits.
a.) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x-1}$
b.) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
c.) $\lim _{x \rightarrow 0^{+}} x^{2} \ln x$
d.) $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{\frac{1}{x}}$
e.) $\lim _{x \rightarrow 0}(\sin x)^{\tan x}$

Section 5.1

2. Given the graph of $f^{\prime}(x)$ find intervals if increase/decrease, local extrema, intervals of concavity and inflection points.

3. Sketch a graph satisfying:
a.) Domain: All real numbers
b.) $f(-1)=-2, f(0)=0, f(2)=3$
c.) $f^{\prime}(x)<0$ for $x<-1$ and $x>2$
d.) $f^{\prime}(x)>0$ if $-1<x<2$
e.) $f^{\prime \prime}(x)>0$ if $x<0$ and $f^{\prime \prime}(x)<0$ if $x>0$

Section 5.2

4. For the following functions, identify all critical values.
a.) $f(x)=4 x^{3}-9 x^{2}-12 x+3$
b.) $f(x)=x^{2} e^{2 x}$
c.) $f(x)=\left|x^{2}-2 x\right|$
d.) $f(x)=\left(x^{2}-x\right)^{1 / 3}$
e.) $f(x)=\frac{x+1}{x-2}$
5. Find the absolute and local extrema for the following functions by graphing.
a.) $f(x)=1-x^{2},-1<x \leq 2$
b.) $f(x)= \begin{cases}x^{2} & \text { if }-1 \leq x<0 \\ 2-x^{2} & \text { if } 0 \leq x \leq 1\end{cases}$
6. Find the absolute extrema for $f(x)=x^{3}-12 x+1$ over the interval $[-1,5]$

Section 5.3

7. State the Mean Value Theorem. Verify $f(x)=x^{2}$ satisfies the Mean Value Theorem on the interval $[-1,2]$. Find all c that satisfies the conclusion of the Mean Value Theorem.
8. Find the intervals where the given function is increasing or decreasing and identify all local extrema:
a) $f(x)=3 x^{4}+4 x^{3}-12 x^{2}+8$
b) $f(x)=\frac{x}{(x-1)^{2}}$
c) $f(x)=\left(x^{2}-x\right)^{1 / 3}$
9. Determine the intervals where the given function is concave up or concave down and identify all inflection points for $f(x)=x^{5}+5 x^{4}$
10. Given $f(-3)=4, f^{\prime}(-3)=0, f^{\prime \prime}(-3)=7, f(2)=$ $-5, f^{\prime}(2)=0$, and $f^{\prime \prime}(2)=-6$, identify any local extrema of f.

Section 5.5

11. A rectangular storage container with an open top is to have a volume of 10 cubic meters. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the cheapest such container.
12. Find the point on the parabola $x+y^{2}=0$ that is closest to the point $(0,-3)$.
13. A piece of wire 12 inches long is cut into two pieces. One piece is bent into an equilateral triangle and the other is bent into a circle. How should the wire be cut so that the total area enclosed is a maximum? A minimum?
14. What are the dimensions of the largest rectangle that can be inscribed in the area bounded by the curve $y=12-x^{2}$ and the x-axis?
