MATH 152 Summer 2016

SAMPLE EXAM II

- 1. Find the coefficient of $(x 4)^3$ in the Taylor Series expansion for the function $f(x) = \sqrt{x}$ at a = 4.
 - a) $\frac{3}{256}$ b) $\frac{3}{128}$ c) $\frac{1}{256}$ d) $\frac{5}{264}$ e) $\frac{1}{512}$
- 2. Suppose we use s_4 , the fourth partial sum, to approximate the sum of the series $S = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$. Which of the following is true from the Alternating Series Estimation Theorem regarding an upper bound of the absolute value of the remainder?
 - a) $|R_4| < \frac{1}{625}$ b) $|R_4| < \frac{1}{256}$ c) $|R_4| < \frac{1}{192}$ d) $|R_4| < \frac{1}{375}$ e) $|R_4| < \frac{1}{132}$
- 3. If $\sum_{n=1}^{\infty} c_n x^n$ converges at x = 2 and diverges at x = 8, then which of the following is true? Circle all true answers.

a)
$$\sum_{n=1}^{\infty} c_n x^n$$
 will converge at $x = 1$
b) $\sum_{n=1}^{\infty} c_n x^n$ will converge at $x = 3$
c) $\sum_{n=1}^{\infty} c_n x^n$ will diverge at $x = 4$
d) $\sum_{n=1}^{\infty} c_n x^n$ will diverge at $x = 9$
e) $\sum_{n=1}^{\infty} c_n x^n$ may converge at $x = 6$.

- 4. The series $\sum_{n=2}^{\infty} \frac{1}{n-\sqrt{n}}$ is a) divergent because $\frac{1}{n-\sqrt{n}} > \frac{1}{n}$ and $\sum_{n=2}^{\infty} \frac{1}{n}$ is a divergent p-series.
 - b) convergent because $\frac{1}{n-\sqrt{n}} < \frac{1}{n}$ and $\sum_{n=2}^{\infty} \frac{1}{n}$ is a convergent p-series.

c) convergent because $\frac{1}{n-\sqrt{n}} > \frac{1}{n}$ and $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ is a convergent p series.

- d) divergent by the Ratio Test.
- e) divergent by the Test for Divergence.
- 5. Which of the following series converges?

(I)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$
 (II) $\sum_{n=1}^{\infty} \frac{n!}{n^{1000}}$ (III) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$

- a) I only
- b) II only
- c) III only
- d) I and III
- e) all 3 series converge
- 6. Which of the following series is absolutely convergent?

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

c)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n}$$

d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

e)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n^{10} + n}$$

7. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} (2n+1)!(2x-1)^n$

- a) 0
- b) ∞
- c) $\frac{1}{2}$
- d) $-\frac{1}{2}$ e) 1

8. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2n)!(2x-1)^n}{n!}$

- a) $\left\{\frac{1}{2}\right\}$ b) $(-\infty, \infty)$ c) $\{0\}$ d) (-1, 1)
- e) Diverges everywhere

9. Which of the following is a Maclaurin Series for $\int_0^x \sin(t^2) dt$?

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!}$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!}$$

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+4}}{(2n+4)(2n+1)!}$$

d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}$$

e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{(2n+3)(2n)!}$$

10. Find the limit of the sequence $a_n = (-1)^n e^{\frac{\ln n}{n}}$

- a) $\frac{1}{e}$
- b) diverges
- c) 0
- d) 1
- e) -1

11.
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{(-10)^n} =$$

a) $\frac{10}{19}$
b) $\frac{9}{19}$
c) $\frac{1}{8}$
d) -10
e) $\frac{-9}{19}$

12. The series
$$\sum_{n=1}^{\infty} \frac{n}{3n+1}$$

a) Converges to $\frac{1}{3}$
b) Converges to 0
c) Converges to 1
d) Converges to $\frac{1}{4}$
e) diverges

13. If the *nth* partial sum of the series $\sum_{n=1}^{\infty} a_n$ is $s_n = \frac{n+1}{n+2}$, find (i) a_n and (ii) $\sum_{n=1}^{\infty} a_n$.

a) (i)
$$a_n = \frac{1}{(n+1)(n+2)}$$
 and (ii) $\sum_{n=0}^{\infty} a_n = 1$
b) (i) $a_n = \frac{2}{(n+1)(n+2)}$ and (ii) $\sum_{n=0}^{\infty} a_n = 1$
c) (i) $a_n = \frac{1}{(n+1)}$ and (ii) $\sum_{n=0}^{\infty} a_n = 1$
d) (i) $a_n = \frac{n}{(n+1)(n+2)}$ and (ii) $\sum_{n=0}^{\infty} a_n = 1$

e) None of these, the series diverges by the Test for Divergence.

14. Find the length of the curve $y = 4x^{3/2}$ from (0,0) to (2,4).

a)
$$\frac{1}{54}(73\sqrt{73}-1)$$

b) $\frac{1}{27}(73\sqrt{73}-1)$
c) $\frac{1}{54}(37\sqrt{37}-1)$
d) $\frac{1}{27}(37\sqrt{37}-1)$
e) None of these.

15. Consider the sequence whose terms are defined as $a_1 = 2$, $a_{n+1} = 4 - \frac{3}{a_n}$. Given that the terms of the sequence are increasing and bounded, find the limit of the sequence.

- a) L = 1
- b) L = 3
- c) L = 2.5
- d) L = 2.8
- e) The sequence diverges.

Part II - Work Out Problems

16. Find the surface area obtained by rotating the curve parametrized by $x(t) = \cos^2 t$, $y(t) = \sin^2 t$, $0 \le t \le \frac{\pi}{2}$ about the y axis.

17. Find the sum of the series

(i) The series whose *nth* partial sum is given by $s_n = \ln(n) - \ln(2n+1)$

(ii)
$$\sum_{n=0}^{\infty} \frac{2^{2n+3}}{5^n}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 2n}$$

18. Find the surface area obtained by rotating the curve $y = \frac{x^4}{4} + \frac{1}{8x^2}$, $1 \le x \le 3$, about the x axis.

19. Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{n2^n}$

20. Find a power series for $g(x) = \int x^3 \ln(1+x^2) dx$.

21. Find the power series about 0 for $f(x) = \frac{2x}{(1-x^2)^2}$

22. Find the Taylor Series for $f(x) = \frac{1}{x+1}$ centered at a = 1.

23. Prove the series $\sum_{n=1}^{\infty} n^2 e^{-n^3}$ converges. Use the sum of the first 4 terms to approximate the sum of the series and estimate the error.