MATH 152
Summer 2016

SAMPLE EXAM II

1. Find the coefficient of $(x-4)^{3}$ in the Taylor Series expansion for the function $f(x)=\sqrt{x}$ at $a=4$.
a) $\frac{3}{256}$
b) $\frac{3}{128}$
c) $\frac{1}{256}$
d) $\frac{5}{264}$
e) $\frac{1}{512}$
2. Suppose we use s_{4}, the fourth partial sum, to approximate the sum of the series $S=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}$. Which of the following is true from the Alternating Series Estimation Theorem regarding an upper bound of the absolute value of the remainder?
a) $\left|R_{4}\right|<\frac{1}{625}$
b) $\left|R_{4}\right|<\frac{1}{256}$
c) $\left|R_{4}\right|<\frac{1}{192}$
d) $\left|R_{4}\right|<\frac{1}{375}$
e) $\left|R_{4}\right|<\frac{1}{132}$
3. If $\sum_{n=1}^{\infty} c_{n} x^{n}$ converges at $x=2$ and diverges at $x=8$, then which of the following is true? Circle all true answers.
a) $\sum_{n=1}^{\infty} c_{n} x^{n}$ will converge at $x=1$
b) $\sum_{n=1}^{\infty} c_{n} x^{n}$ will converge at $x=3$
c) $\sum_{n=1}^{\infty} c_{n} x^{n}$ will diverge at $x=4$
d) $\sum_{n=1}^{\infty} c_{n} x^{n}$ will diverge at $x=9$
e) $\sum_{n=1}^{\infty} c_{n} x^{n}$ may converge at $x=6$.
4. The series $\sum_{n=2}^{\infty} \frac{1}{n-\sqrt{n}}$ is
a) divergent because $\frac{1}{n-\sqrt{n}}>\frac{1}{n}$ and $\sum_{n=2}^{\infty} \frac{1}{n}$ is a divergent p-series.
b) convergent because $\frac{1}{n-\sqrt{n}}<\frac{1}{n}$ and $\sum_{n=2}^{\infty} \frac{1}{n}$ is a convergent p-series.
c) convergent because $\frac{1}{n-\sqrt{n}}>\frac{1}{n}$ and $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ is a convergent p series.
d) divergent by the Ratio Test.
e) divergent by the Test for Divergence.
5. Which of the following series converges?
(I) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+1}$
(II) $\sum_{n=1}^{\infty} \frac{n!}{n^{1000}}$
(III) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)^{2}}$
a) I only
b) II only
c) III only
d) I and III
e) all 3 series converge
6. Which of the following series is absolutely convergent?
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
c) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n \ln n}$
d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$
e) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{10}+n}$
7. Find the radius of convergence of the power series $\sum_{n=0}^{\infty}(2 n+1)!(2 x-1)^{n}$
a) 0
b) ∞
c) $\frac{1}{2}$
d) $-\frac{1}{2}$
e) 1
8. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2 n)!(2 x-1)^{n}}{n!}$
a) $\left\{\frac{1}{2}\right\}$
b) $(-\infty, \infty)$
c) $\{0\}$
d) $(-1,1)$
e) Diverges everywhere
9. Which of the following is a Maclaurin Series for $\int_{0}^{x} \sin \left(t^{2}\right) d t$?
a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n}}{(2 n)!}$
b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{(4 n+1)(2 n)!}$
c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+4}}{(2 n+4)(2 n+1)!}$
d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+3}}{(4 n+3)(2 n+1)!}$
е) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+3}}{(2 n+3)(2 n)!}$
10. Find the limit of the sequence $a_{n}=(-1)^{n} e^{\frac{\ln n}{n}}$
a) $\frac{1}{e}$
b) diverges
c) 0
d) 1
e) -1
11. $\sum_{n=1}^{\infty} \frac{3^{2 n}}{(-10)^{n}}=$
a) $\frac{10}{19}$
b) $\frac{9}{19}$
c) $\frac{1}{8}$
d) -10
e) $\frac{-9}{19}$
12. The series $\sum_{n=1}^{\infty} \frac{n}{3 n+1}$
a) Converges to $\frac{1}{3}$
b) Converges to 0
c) Converges to 1
d) Converges to $\frac{1}{4}$
e) diverges
13. If the $n t h$ partial sum of the series $\sum_{n=1}^{\infty} a_{n}$ is $s_{n}=\frac{n+1}{n+2}$, find (i) a_{n} and (ii) $\sum_{n=1}^{\infty} a_{n}$.
a) (i) $a_{n}=\frac{1}{(n+1)(n+2)}$ and (ii) $\sum_{n=0}^{\infty} a_{n}=1$
b) (i) $a_{n}=\frac{2}{(n+1)(n+2)}$ and (ii) $\sum_{n=0}^{\infty} a_{n}=1$
c) (i) $a_{n}=\frac{1}{(n+1)}$ and (ii) $\sum_{n=0}^{\infty} a_{n}=1$
d) (i) $a_{n}=\frac{n}{(n+1)(n+2)}$ and (ii) $\sum_{n=0}^{\infty} a_{n}=1$
e) None of these, the series diverges by the Test for Divergence.
14. Find the length of the curve $y=4 x^{3 / 2}$ from $(0,0)$ to $(2,4)$.
a) $\frac{1}{54}(73 \sqrt{73}-1)$
b) $\frac{1}{27}(73 \sqrt{73}-1)$
c) $\frac{1}{54}(37 \sqrt{37}-1)$
d) $\frac{1}{27}(37 \sqrt{37}-1)$
e) None of these.
15. Consider the sequence whose terms are defined as $a_{1}=2, a_{n+1}=4-\frac{3}{a_{n}}$. Given that the terms of the sequence are increasing and bounded, find the limit of the sequence.
a) $L=1$
b) $L=3$
c) $L=2.5$
d) $L=2.8$
e) The sequence diverges.

Part II - Work Out Problems

16. Find the surface area obtained by rotating the curve parametrized by $x(t)=\cos ^{2} t, y(t)=\sin ^{2} t, 0 \leq t \leq \frac{\pi}{2}$ about the y axis.
17. Find the sum of the series
(i) The series whose $n t h$ partial sum is given by $s_{n}=\ln (n)-\ln (2 n+1)$
(ii) $\sum_{n=0}^{\infty} \frac{2^{2 n+3}}{5^{n}}$
(iii) $\sum_{n=1}^{\infty} \frac{2}{n^{2}+2 n}$
18. Find the surface area obtained by rotating the curve $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}, 1 \leq x \leq 3$, about the x axis.
19. Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n 2^{n}}$
20. Find a power series for $g(x)=\int x^{3} \ln \left(1+x^{2}\right) d x$.
21. Find the power series about 0 for $f(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}}$
22. Find the Taylor Series for $f(x)=\frac{1}{x+1}$ centered at $a=1$.
23. Prove the series $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$ converges. Use the sum of the first 4 terms to approximate the sum of the series and estimate the error.
