Summer 2016 Math 152

Week in Review 1
courtesy: Amy Austin
(covering 7.1-7.4)

Section 7.1

1. Sketch the region bounded by the given curves and find the area of this region.
a.) $y=x^{2}+1$ and $y=3-x^{2}$
b.) $x+y^{2}=2, x+y=0$
c.) $y=2 \cos x, y=16 e^{4 x}, x=0, x=\frac{\pi}{2}$
d.) $y=x^{2}+1, y=3-x^{2}, x=-2, x=2$
2. Find the area of the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola at $(1,1)$ and the x-axis.

Section 7.2 and 7.3

3. Find the volume of the solid obtained by rotating the region bounded by the given curve(s) about the specified axis.
a.) $y=\sqrt{x-1}, x=2, x=5, y=0$ about the x axis.
b.) $y=e^{x}, y=0, x=0, x=1$ about the x axis.
c.) $y=x^{4}, y=1$, about the line $y=2$
d.) $y^{2}=x, x=2 y$ about the x axis.
e.) Same as d, but revolve around the y axis.
f.) $y=\frac{1}{x}, y=0, x=1, x=10$. Rotate around the y axis.
g.) $y=2 x-x^{2}, y=0$. Rotate around the y axis.
h.) $x=\sqrt[4]{y}, x=0, y=16$. Rotate around the x axis.
i.) $y=\sqrt{x}, y=0, x+y=2$. Rotate around the x axis.
j.) $y=x^{2}, y=0, x=1, x=2$. Rotate around the line $x=4$.
4. Find the volume of the solid S whose base is the triangular region with vertices $(0,0),(1,0)$ and $(0,2)$. The cross sections of S perpendicular to the x-axis are semi-circles.

5. Find the volume of the solid S whose base is the ellipse $x^{2}+\frac{y^{2}}{4}=1$. The cross sections of S perpendicular to the y-axis are squares.
6. Find the volume of the solid S whose base is the region bounded by the parabola $y=x^{2}$ and $y=1$. The cross sections of S perpendicular to the y-axis are equilateral triangles.

Section 7.4

7. How much work is done in lifting a 30 lb barbell from the floor to a height of 4 feet?
8. When a particle is at a distance x meters from the origin, a force of $f(x)=3 x^{2}+2$ Newtons acts on it. How much work is done in moving the object from $x=2$ to $x=4$?
9. A spring has a natural length of 6 inches. If a 5 lb force is required to maintain it to a length of 18 inches, how much work is required to stretch it from 1 foot to 3 feet?
10. Suppose 2 N of work is needed to stretch a spring 1 meter beyond its natural length. How much work is done in stretching this spring 3.5 m beyond its natural length?
11. A heavy rope, 50 feet long, weighs 0.5 pounds per foot and hangs over the edge of a building 120 feet high. How much work is done in pulling the rope to the top of the building?
12. A 200 pound cable is 300 feet long and hangs vertically from the top of a tall building. How much work is required to pull 20 feet of the cable to the top of the building?
13. An aquarium 10 m long, 2 m wide and 1 m deep is full of water. Find the work required to pump half the water to the top of the aquarium.
14. A tank contains water and has the shape of a trough 6 feet long. The end of the trough is an isosceles triangle with height 3 feet and base length 4 feet. The vertex of the triangle is at the bottom. Find the work required to pump all of the water to the top of the tank.
15. A tank in the shape of sphere with radius 4 m is half full of water. The water is pumped from a spout at the top of the tank that is 1 m high. Find the work done in pumping the water through the spout.
16. A tank in the shape of cone with radius 1 inch and height 15 inches is full of water to a depth of 7 inches. Find the work done in pumping the water to the top of the tank.
