Summer 2016 Math 152

Week in Review 3 courtesy: Amy Austin (covering 9.3,9.4,10.1,10.2)

Section 9.3

- 1. Find the length of the curve $y = 2x^{3/2}, 0 \le x \le \frac{1}{4}$.
- 2. Find the length of the curve $x = y^2 \frac{\ln(y)}{8}$ from y = 1 to y = e.
- 3. Find the length of the parametric curve $x = 3t t^3$, $y = 3t^2$, $0 \le t \le 2$.

Section 9.4

- 4. Find the surface area obtained by revolving the given curve about the indicated axis.
 - a.) $y = 2x^3, 0 \le x \le 1$ about the x axis.

b.) $y^2 = x + 2, 1 \le y \le 3$ about the x axis.

- c.) $y = x^2 + 1, 0 \le x \le 1$, about the y axis.
- d.) $y = \sqrt{4x}, 0 \le x \le 1$, about the x axis.

e.) $x = \sin(3t), y = \cos(3t), 0 \le t \le \frac{\pi}{12}$ about the y axis.

Section 10.1

- 5. Find the fourth term of the sequence $\{\frac{n}{n+1}\}_{n=2}^{\infty}$
- 6. Find a general formula for the sequence

$$1 \ 1 \ 1 \ 1$$

7. Determine whether the following sequences converge or diverge. If the sequence converges, find the limit. If the sequence diverges, explain why.

a.)
$$a_n = \frac{n^3}{n^2 + 500n - 2}$$

b.) $a_n = \ln(2n + 1) - \ln(5n + 4)$
c.) $a_n = \frac{(-1)^n}{n}$
d.) $a_n = \frac{5 \cos n}{n}$
e.) $a_n = \frac{(-1)^n n}{5n + 6}$

8. Prove the sequence $a_n = \frac{\ln n}{n}$ is a decreasing sequence.

9. For the recursive sequence given, find the 3rd term and find the value of the limit.

$$a_1 = 2, a_{n+1} = 2 + \frac{1}{4}a_n.$$

Section 10.2

Definition: A series is the sum of a sequence, that is $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_{100} + \ldots + \ldots$

Definition: We call $\{s_n\}$ a sequence of partial sums, where

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

Definition:
$$\sum_{n=1}^\infty a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=1}^n a_i$$

- 10. Find the first 5 terms in the sequence of partial sums the series $\sum_{n=1}^{\infty} (1)$. From this, what can be concluded about the convergence/divergence of this series?
- 11. Find the first 5 terms in the sequence of partial sums the series $\sum_{n=1}^{\infty} (-1)^n$. From this, what can be concluded about the convergence/divergence of this series?
- 12. Use the Test For Divergence to show the series diverges: $\sum_{n=1}^{\infty} \frac{n^2}{3(n+1)(n+2)}$
- 13. Explain why the Test for Divergence is inconclusive when applied to the series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$.

14. If the
$$n^{th}$$
 partial sum of the series $\sum_{n=1}^{\infty} a_n$ is

$$s_n = \frac{n+1}{n+4}$$
, find:
a.) s_{100} , that is $\sum_{n=1}^{100} a_n = ?$

- b.) The sum of the series, that is $\sum_{n=1}^{\infty} a_n =?$
- c.) A general formula for a_n , then find a_6 .
- 15. Find the sum of the series:

a.)
$$\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} - \sin \frac{1}{n+1} \right)$$

b.)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$

c.)
$$\sum_{n=1}^{\infty} 2 \left(\frac{5}{7} \right)^{n-1}$$

d.)
$$\sum_{n=0}^{\infty} \frac{2^{3n}}{(-5)^{n+1}}$$

e.)
$$\sum_{n=0}^{\infty} \frac{(-1)^n + 3^n}{4^n}$$