Summer 2016 Math 152
Week in Review 3
courtesy: Amy Austin
(covering 9.3,9.4,10.1,10.2)

## Section 9.3

1. Find the length of the curve $y=2 x^{3 / 2}, 0 \leq x \leq \frac{1}{4}$.
2. Find the length of the curve $x=y^{2}-\frac{\ln (y)}{8}$ from $y=1$ to $y=e$.
3. Find the length of the parametric curve $x=3 t-t^{3}$, $y=3 t^{2}, 0 \leq t \leq 2$.

## Section 9.4

4. Find the surface area obtained by revolving the given curve about the indicated axis.
a.) $y=2 x^{3}, 0 \leq x \leq 1$ about the $x$ axis.
b.) $y^{2}=x+2,1 \leq y \leq 3$ about the $x$ axis.
c.) $y=x^{2}+1,0 \leq x \leq 1$, about the $y$ axis.
d.) $y=\sqrt{4 x}, 0 \leq x \leq 1$, about the $x$ axis.
e.) $x=\sin (3 t), y=\cos (3 t), 0 \leq t \leq \frac{\pi}{12}$. about the $y$ axis.

## Section 10.1

5. Find the fourth term of the sequence $\left\{\frac{n}{n+1}\right\}_{n=2}^{\infty}$
6. Find a general formula for the sequence $\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \ldots$
7. Determine whether the following sequences converge or diverge. If the sequence converges, find the limit. If the sequence diverges, explain why.
a.) $a_{n}=\frac{n^{3}}{n^{2}+500 n-2}$
b.) $a_{n}=\ln (2 n+1)-\ln (5 n+4)$
c.) $a_{n}=\frac{(-1)^{n}}{n}$
d.) $a_{n}=\frac{5 \cos n}{n}$
e.) $a_{n}=\frac{(-1)^{n} n}{5 n+6}$
8. Prove the sequence $a_{n}=\frac{\ln n}{n}$ is a decreasing sequence.
9. For the recursive sequence given, find the 3 rd term and find the value of the limit.
$a_{1}=2, a_{n+1}=2+\frac{1}{4} a_{n}$.

## Section 10.2

Definition: A series is the sum of a sequence, that is $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{100}+\ldots+\ldots$
Definition: We call $\left\{s_{n}\right\}$ a sequence of partial sums, where
$s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n}$
Definition: $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}$
10. Find the first 5 terms in the sequence of partial sums the series $\sum_{n=1}^{\infty}(1)$. From this, what can be concluded about the convergence/divergence of this series?
11. Find the first 5 terms in the sequence of partial sums the series $\sum_{n=1}^{\infty}(-1)^{n}$. From this, what can be concluded about the convergence/divergence of this series?
12. Use the Test For Divergence to show the series diverges:

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{3(n+1)(n+2)}
$$

13. Explain why the Test for Divergence is inconclusive when applied to the series $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$.
14. If the $n^{\text {th }}$ partial sum of the series $\sum_{n=1}^{\infty} a_{n}$ is $s_{n}=\frac{n+1}{n+4}$, find:
a.) $s_{100}$, that is $\sum_{n=1}^{100} a_{n}=$ ?
b.) The sum of the series, that is $\sum_{n=1}^{\infty} a_{n}=$ ?
c.) A general formula for $a_{n}$, then find $a_{6}$.
15. Find the sum of the series:
a.) $\sum_{n=1}^{\infty}\left(\sin \frac{1}{n}-\sin \frac{1}{n+1}\right)$
b.) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n}$
c.) $\sum_{n=1}^{\infty} 2\left(\frac{5}{7}\right)^{n-1}$
d.) $\sum_{n=0}^{\infty} \frac{2^{3 n}}{(-5)^{n+1}}$
e.) $\sum_{n=0}^{\infty} \frac{(-1)^{n}+3^{n}}{4^{n}}$
