Arc length
(1) $y=f(x), a \leqslant x \leqslant b$
(3) $x=g(t), y=f(t)$,
$L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ $\alpha \leq t \leq \beta$
$L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
(3) $x=g(y), c \leq y \leq d$

$$
L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Section 9.3

1. Find the length of the curve $y=2 x^{3 / 2}, 0 \leq x \leq \frac{1}{4}$.

$$
\begin{aligned}
& \text { (1) } L=\int_{0}^{\frac{4}{4}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \quad y=2 x^{\frac{3}{2}} \quad \frac{d y}{d x}=3 x^{\frac{1}{2}}=(3 \sqrt{x}) \\
& L=\int_{0}^{\frac{1}{4}} \sqrt{1+9 x} d x \quad u=1+9 x<\begin{array}{l}
x=\frac{1}{4}, u=\frac{13}{4} \\
x=0, u=1
\end{array} \\
& \begin{array}{ll}
L=\frac{1}{9} \int_{1}^{\frac{13}{4}} u^{\frac{1}{2}} d u & \quad \int \frac{2}{27}\left(\left(\frac{13}{4}\right)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right) \\
L=\left.\frac{1}{9} \frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{\frac{13}{4}} & \frac{2}{27}\left(\frac{13^{3 / 2}}{8}-1\right)
\end{array} \\
& \frac{2}{27}\left(\frac{13 \sqrt{13}}{8}-1\right)
\end{aligned}
$$

2. Find the length of the curve $x=y^{2}-\frac{\ln (y)}{8}$ from

$$
\begin{aligned}
& y=1 \text { to } y=e \text {. } \\
& \text { (2) } L=\int_{1}^{e} \sqrt{\left.1+\sqrt{\left(\frac{d x}{d y}\right)^{2}}\right)} d y \quad x=y^{2}-\frac{1}{8} \ln y \\
& \frac{d x}{d y}=2 y-\frac{1}{8 y} \\
& L=\int_{1}^{e} \sqrt{1+4 y^{2}-\frac{1}{2}+\frac{1}{64 y^{2}}} d y \quad \begin{aligned}
\left(\frac{d x}{d y}\right)^{2} & =4 y^{2}-2 \cdot 2 y \cdot \frac{1}{8 y}+\frac{1}{64 y^{2}}
\end{aligned} \\
& =\int_{1}^{e} \sqrt{4 y^{2}+\frac{1}{2}+\frac{1}{64 y^{2}}} d y
\end{aligned}
$$

3. Find the length of the parametric curve $x=3 t-t^{3}$,
(3)

$$
\begin{aligned}
L & \left.=\int_{0}^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad \begin{array}{l}
x=3 t-t^{3} \quad y=3 t^{2} \\
L
\end{array}\right]=3-3 t^{2} \quad \frac{d y}{d t}=6 t \\
L & =\int_{0}^{2} \sqrt{\left(3-3 t^{2}\right)^{2}+(6 t)^{2}} d t \\
& =\int_{0}^{2} \sqrt{9-18 t^{2}+9 t^{4}+36 t^{2}} d t \\
& =\int_{0}^{2} \sqrt{9 t^{4}+18 t^{2}+9} d t \\
& =\int_{0}^{2} \sqrt{\left(3 t^{2}+3\right)^{2}} d t \quad=\left.\left(t^{3}+3 t\right)\right|_{0} ^{2} \\
& =\int_{0}^{2}\left(3 t^{2}+3\right) d t
\end{aligned}
$$

2) x-axis
$=r=f(x) \quad S A=\int 2 \pi r$ arclength $\frac{d x}{d y} d t$
(2) y-axis $S A=\int 2 \pi r \operatorname{arclength} \begin{aligned} & d x \\ & d y \\ & d t\end{aligned}$

Section 9.4
4. Find the surface area obtained by revolving the given curve about the indicated axis.
a.) $y=2 x^{3}, 0 \leq x \leq 1$ about the x axis.

$$
\zeta r=y=2 x^{3}
$$

$$
\begin{aligned}
S A & =\int_{0}^{1} 2 \pi r \text { arclength } d x \quad \frac{d y}{d x}=6 x^{2} \\
& =\int_{0}^{1} 2 \pi \cdot 2 x^{3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

$$
=4 \pi \int_{0}^{1} x^{3} \sqrt{1+36 x^{4}} d x
$$

$$
=\frac{4 \pi}{144} \int_{1}^{37} u^{\frac{1}{2}} d u
$$

$$
\begin{aligned}
& =\frac{4 \pi}{144} \int_{1}^{31} u^{\overline{2}} d u \\
& =\left.\frac{\pi}{36} \frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{37}
\end{aligned} \quad\left[\frac{\pi}{54}(37 \sqrt{37}-1)\right.
$$

$$
=\frac{\pi}{54}\left[37^{\frac{3}{2}}-1^{\frac{3}{2}}\right]
$$

$\frac{d x}{d y}=2 y$
$S A=\int_{1}^{3} 2 \pi r$ arclength $d y$

$$
\begin{aligned}
& =\int_{1}^{3} 2 \pi y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =2 \pi \int_{1}^{3} y \sqrt{1+4 y^{2}} d y \quad u=1+4 y^{2}<\quad \begin{array}{l}
y=3, u=37 \\
y=1, u=5
\end{array} \\
& =\frac{2 \pi}{8} \int_{5}^{37} u^{\frac{1}{2}} d u=8 y d y \quad\left[\frac{\pi}{6}(37 \sqrt{37}-5 \sqrt{5})\right. \\
& =\left.\frac{\pi}{4} \frac{2}{3} u^{\frac{3}{2}}\right|_{5} ^{37} \quad
\end{aligned}
$$

$$
\begin{aligned}
& \text { b.) } y^{2}=x+2,1 \leq y \leq 3 \text { about the } x \text { axis. } \\
& x=y^{2}-2 \quad \quad \longrightarrow r=y^{2}
\end{aligned}
$$

c.) $y=x^{2}+1,0 \leq x \leq 1$, about the y axis.

$$
\frac{d y}{d x}=2 x
$$

$$
S A=\int_{0}^{1} 2 \pi r \operatorname{arclenath} d x
$$

$$
=\int_{0}^{1} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

$$
u=1+4 x^{2}<_{x=0, u=1}^{x=1, u=5}
$$

$$
=2 \pi \int_{0}^{1} x \sqrt{1+4 x^{2}} d x
$$

$$
d u=8 x d x
$$

$$
\begin{aligned}
& =2 \pi \int_{0} x \sqrt{1+4 x^{2} d x} \\
& =\frac{\pi}{4} \int_{1}^{5} u^{\frac{1}{2}} d u=\left.\frac{\pi}{4} \frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{5}=\frac{\pi}{6}(5 \sqrt{5}-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { d.) } y=\sqrt{4 x}, 0 \leq x \leq 1 \text {, about the } x \text { axis. } \\
& y^{2}=4 x \quad 0 \leq y \leq 2 \quad \amalg r=y \\
& x=\frac{1}{4} y^{2} \\
& \frac{d x}{d y}=\frac{1}{2} y \\
& S A=\int_{0}^{2} 2 \pi \text { rarclength } d y \\
& =\int_{0}^{2} 2 \pi y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =2 \pi \int_{0}^{2} y \sqrt{1+\frac{1}{4} y^{2}} d y \\
& u=1+\frac{1}{4} y^{2}<\sum_{y=0, u=1}^{y=2, u=2} \\
& d u=\frac{1}{2} y d y \\
& =4 \pi \int_{1}^{2} u^{\frac{1}{2}} d u \\
& =\left.4 \pi \frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{2} \\
& =\frac{8 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

e.) $x=\ln (3 y+1), 0 \leq y \leq 2$, about the y axis, then the x axis. Set up the integral that gives the surface area. Do not integrate.

ఎ

$$
\begin{aligned}
y \text {-axis: } r= & x=\ln (3 y+1) \\
\frac{d x}{d y}= & \frac{3}{3 y+1} \\
S A= & \int_{0}^{2} 2 \pi \ln (3 y+1) \sqrt{1+\left(\frac{3}{3 y+1}\right)^{2}} d y
\end{aligned}
$$

@ x-axis: $r=y$

$$
S A=\int_{0}^{2} 2 \pi y \sqrt{1+\left(\frac{3}{3 y+1}\right)^{2}} d y
$$

f.) $x=\sin (3 t), y=\cos (3 t), 0 \leq t \leq \frac{\pi}{12}$. about the
y axis.

$$
\begin{aligned}
& \frac{y}{L} r=x=\sin (3 t) \\
& S A=\int_{0}^{\frac{\pi}{12}} 2 \pi \sin (3 t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& x=\sin (3 t) \quad y=\cos (3 t) \\
& \frac{d x}{d t}=3 \cos (3 t) \quad \frac{d y}{d t}=-3 \sin (3 t) \\
& \operatorname{SA}=\int_{0}^{\frac{\pi}{12}} 2 \pi \sin (3 t) \sqrt{\underbrace{9 \cos ^{2}(3 t)+9 \sin ^{2}(3 t)}} d t \\
&=\int_{0}^{\frac{9\left(\cos ^{2}(3 t)+\sin ^{2}(3 t)\right)}{\frac{\pi}{2}}} 2 \pi \sin (3 t) \sqrt{9} d t \\
&=6 \pi \int_{0}^{\frac{\pi}{12}} \sin (3 t) d t \\
&=\left.6 \pi\left[-\frac{1}{3} \cos (3 t)\right]\right|_{0} ^{\frac{\pi}{12}} \\
&=-2 \pi\left[\cos \frac{\pi}{4}-\cos (0)\right] \\
&=-2 \pi\left(\frac{\sqrt{2}}{2}-1\right)
\end{aligned}
$$

Section 10.1
5. Find the fourth term of the sequence $\left\{\frac{n}{n+1}\right\}_{n=2}^{\infty}$

$$
\begin{aligned}
& a_{2}=\frac{2}{3} \\
& a_{3}=\frac{3}{4} \\
& a_{4}=\frac{4}{5} \\
& a_{5}=\frac{5}{6}
\end{aligned}
$$

6. Find a general formula for the sequence

$$
\begin{aligned}
\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \cdots & =\frac{1}{2 \cdot 2}, \frac{1}{2 \cdot 3}, \frac{1}{2 \cdot 4}, \frac{1}{2 \cdot 5} \\
& =\left\{\frac{1}{2 n}\right\}_{n=2}^{\infty}=\left\{\frac{1}{2(n+1)}\right\}_{n=1}^{\infty}
\end{aligned}
$$

7. Find a general formula for the sequence $-\frac{1}{3}, \frac{1}{7},-\frac{1}{11}, \frac{1}{15}, \ldots$ alternating $\operatorname{signs} \rightarrow(-1)^{n}$ or $(-1)^{n+1}$

$$
\text { odd numbers: } 2 n+1 X
$$

$$
2 n+3 X
$$

$$
\left\{\frac{(-1)^{n}}{4 n-1}\right\}_{n=1}^{\infty}
$$

$$
4 n-1
$$

8. Determine whether the following sequences converge or diverge. If the sequence converges, find the limit. If the sequence diverges, explain why.
a.) $a_{n}=\frac{n^{3}}{n^{2}+500 n-2} \quad$ if $\lim _{n \rightarrow \infty} a_{n}$ exists, $\left\{a_{n}\right\}$ converges if $\lim _{n \rightarrow \infty} a_{n} d n e,\left\{a_{n}\right\}$ diverges. $\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{2}+500 n-2}=\infty \quad$ [higher degree on top]
b.) $a_{n}=\ln (2 n+1)-\ln (5 n+4)=\ln \left(\frac{2 n+1}{5 n+4}\right)$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(\frac{2 n+1}{5 n+4}\right) & =\ln \left(\lim _{n \rightarrow \infty} \frac{2 n+1}{5 n+4}\right) \\
& =\ln \frac{2}{5} \text { converges }
\end{aligned}
$$

c.) $a_{n}=\frac{5 \cos n}{n}$ diverges

$$
\begin{aligned}
& -1 \leq \cos n \leq 1 \\
& -5 \leq 5 \cos n \leq 5 \\
& -\frac{5}{n} \leq \frac{5 \cos n}{n} \leq \frac{5}{n}
\end{aligned}
$$

$\longrightarrow \lim _{n \rightarrow \infty} \frac{5 \cos n}{n}=0$ by squeeze theorem.

Theorem: If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$
d.) $a_{n}=\frac{(-1)^{n}}{n}$ then $\lim _{n \rightarrow \infty} a_{n}=0$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right| & =\lim _{n \rightarrow \infty} \frac{1}{n} \\
& =0 \quad \therefore \quad \lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0 \quad \text { converaes }
\end{aligned}
$$

e.) $a_{n}=\frac{(-1)^{n} n}{5 n+6}$

$$
\begin{aligned}
&=\frac{(-1)^{n} n}{5 n+6} \\
& \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} n}{5 n+6}\right|= \lim _{n \rightarrow \infty} \frac{n}{5 n+6}=\frac{1}{5} \\
& n \text { even } \lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{5 n+6} \rightarrow \frac{1}{5} \\
& n \text { odd } \lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{5 n+6} \rightarrow \frac{-1}{5}
\end{aligned}
$$

since limits are unique,

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{5 n+6} \quad \begin{array}{l}
d n e \\
\text { diverges by } \\
\text { oscillation. }
\end{array}
\end{array}
$$

f.) $a_{n}=\frac{(\arctan n)^{5}}{n^{2}}$

$$
\begin{gathered}
-\frac{\pi}{2}=-1----1 \\
\lim _{n \rightarrow \infty} \frac{(\arctan n)^{5}}{n^{2}} \rightarrow \frac{\left(\frac{\pi}{2}\right)^{5}}{\infty}=0
\end{gathered}
$$

g.) $a_{n}=\sqrt{n^{2}+4 n}-n=\infty-\infty=0$ NO!

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+4 n}-n\right)\left(\sqrt{n^{2}+4 n}+n\right)}{\sqrt{n^{2}+4 n}+n} \\
& \lim _{n \rightarrow \infty} \frac{\alpha^{2}+4 n-\alpha^{2}}{\sqrt{n^{2}+4 n}+n} \\
& \lim _{n \rightarrow \infty} \frac{4 n}{\sqrt{n^{2}+4 n}+n}=\lim _{n \rightarrow \infty} \frac{4 \alpha}{2 x} \\
&=2
\end{aligned}
$$

9. Prove the sequence $a_{n}=\frac{\ln n}{n}$ is a decreasing sequince.
recall: $f(x)$ decreases if $f^{\prime}(x)<0$

$$
\begin{aligned}
\frac{d}{d n}\left(\frac{\ln n}{n}\right) & =\frac{\frac{1}{n}(n)-\ln n(1)}{n^{2}} \\
& =\frac{1-\ln n}{n^{2}} \leftarrow \text { eventually }
\end{aligned}
$$

10. For the recursive sequence given, find the 3rd term

$$
\begin{aligned}
& \text { and find the value of the limit. } \quad a_{n+1}=f\left(a_{n}\right) \\
& a_{1}=2, a_{n+1}=2+\frac{1}{4} a_{n} . \\
& a_{1}=2, a_{2+1}=2+\frac{1}{4} a_{n} \\
& a_{2}=2+\frac{1}{4}(2)=2+\frac{1}{2}=\frac{5}{2} \\
& a_{3}=2+\frac{1}{4} a_{2}=2+\frac{1}{4} \cdot \frac{5}{2}=2+\frac{5}{8}=\frac{21}{8}
\end{aligned}
$$

Find $\lim _{n \rightarrow \infty} a_{n}$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=L \\
& \lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(2+\frac{1}{4} a_{n}\right) \\
& L=2+\frac{1}{4} L \\
& \frac{3}{4} L=2 \\
& L=\frac{8}{3}
\end{aligned}
$$

