Section 1.1: Vectors

Definition: A Vector is a quantity that has both magnitude and direction. Specifically, a two-dimensional vector is an ordered pair \(\vec{a} = \langle a_1, a_2 \rangle \). We call \(a_1 \) and \(a_2 \) the *components* of the vector \(\vec{a} \). Moreover, \(a_1 \) is how far we move in the \(x \) direction to get from the initial point to the terminal point, and \(a_2 \) is how far we move in the \(y \) direction to get from the initial point to the terminal point.

The special case where the initial point is located at the origin is called the *position vector*.

EXAMPLE 1: Draw the vector with initial point \(A(1, 2) \) and terminal point \(B(3, -2) \). What are the components of \(\vec{AB} \)?

EXAMPLE 2: Find the components of the vector \(\vec{r} \) given that:

(a) \(|\vec{r}| = 2 \) and \(\vec{r} \) makes an angle of \(60^\circ \) with the positive \(x \)-axis.

(b) \(|\vec{r}| = 7 \) and \(\vec{r} \) makes an angle of \(150^\circ \) with the positive \(x \)-axis.

(c) \(|\vec{r}| = \frac{1}{2} \) and \(\vec{r} \) makes an angle of \(-45^\circ \) with the positive \(x \)-axis.
The Algebra of Vectors: Suppose \(\mathbf{a} = \langle a_1, a_2 \rangle \) and \(\mathbf{b} = \langle b_1, b_2 \rangle \).

(1) Scalar Multiplication: If \(c \) is a scalar and \(\mathbf{a} = \langle a_1, a_2 \rangle \) is a vector, then \(\mathbf{ca} = \langle ca_1, ca_2 \rangle \).

(2) Vector Sum: \(\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle \).

(3) Vector Difference: \(\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle \).

(4) Vector Length: \(|\mathbf{a}| = \sqrt{(a_1)^2 + (a_2)^2} \).

(5) Unit Vector: A unit vector is a vector with length one. A unit vector in the direction of \(\mathbf{a} \) is \(\mathbf{u} = \frac{\mathbf{a}}{|\mathbf{a}|} \).

(6) Basis Vectors: Def: \(\mathbf{i} = \langle 1, 0 \rangle \) and \(\mathbf{j} = \langle 0, 1 \rangle \)

Illustration:
EXAMPLE 3: Given \(\mathbf{a} = \langle -1, 2 \rangle \) and \(\mathbf{b} = \langle 4, 3 \rangle \), find:

(a) \(3\mathbf{a} + 4\mathbf{b} - \mathbf{i} \)

(b) \(|\mathbf{a} - \mathbf{b}| \)

(c) A unit vector in the direction of \(\mathbf{b} \).

(d) A vector with length 3 in the direction of \(\mathbf{b} \).
EXAMPLE 4: Suppose $\mathbf{a} = \langle 1, 5 \rangle$, $\mathbf{b} = \langle 3, -1 \rangle$, and $\mathbf{c} = \langle 8, 6 \rangle$. Find scalars t and w so that $t\mathbf{a} + w\mathbf{b} = \mathbf{c}$.

Applications to Physics and Engineering: A force is represented by a vector because it has both magnitude (measured in pounds or newtons) and direction. If several forces are acting on an object, the **resultant force** experienced by the object is the vector sum of the forces.

EXAMPLE 5: Ben walks due west on the deck of a ship at 3 mph. The ship is moving north at 22 mph. Find the speed and direction of Ben relative to the surface of the water.
EXAMPLE 6: Two forces, \(\vec{S} \) and \(\vec{T} \), are acting on an object at a point \(P \) as shown.
\(|\vec{S}| = 20 \) pounds and measures a reference angle of \(45^\circ \).
\(|\vec{T}| = 16 \) pounds and measures a reference angle of \(30^\circ \). Find the resultant force as well as its magnitude and direction.
EXAMPLE 7: Suppose that a wind is blowing from the direction $N45^\circ W$ at a speed of 50 km/hr. A pilot is steering a plane in the direction $N60^\circ E$ at an airspeed (speed in still air) of 250 km/hr. Find the true course (direction of the resultant velocity vectors of the plane and wind) and ground speed (magnitude of resultant).
EXAMPLE 8: Two ropes are used to suspend an 80 pound weight as shown. Find the magnitude of the tension in each rope.