Section 2.5: Continuity

Definition We say \(f(x) \) is continuous at \(x = a \) if \(\lim_{x \to a} f(x) = f(a) \). Note that in order for this definition to be met, the following conditions must hold:

(a) \(x = a \) is in the domain of \(f(x) \) (This ensures that \(f(a) \) is defined).

(b) \(\lim_{x \to a} f(x) \) must exist. Thus \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \).

(c) \(\lim_{x \to a} f(x) = f(a) \).

Some types of discontinuities include ‘holes’, ‘jumps’ and ‘vertical asymptotes’.

The graphs below represents a discontinuity at \(x = 4 \) because \(f(4) \) is not defined.

The graphs below represents a discontinuity at \(x = 4 \) because \(\lim_{x \to 4} f(x) \) does not exist.

The graphs below represents a discontinuity at \(x = 4 \) because \(\lim_{x \to 4} f(x) \neq f(4) \).
EXAMPLE 1: For the graph of $f(x)$ given below, locate all discontinuities. For each discontinuity, find the limit from the left and the limit from the right.

EXAMPLE 2: Explain why the following functions are or are not continuous at the indicated value of x. Support your answer.

(i) $f(x) = \frac{-1}{(1-x)^2}$, $x = 1$.

(ii) $f(x) = \begin{cases} \frac{x^2 - 2x - 8}{x - 4} & \text{if } x \neq 4 \\ 3 & \text{if } x = 4 \end{cases}$ at $x = 4$

(iii) $f(x) = \begin{cases} 2x + 1 & \text{if } x \leq -1 \\ 3x & \text{if } -1 < x < 1 \\ x^2 + 2 & \text{if } x > 1 \\ 4 & \text{if } x = 1 \end{cases}$ at $x = \pm 1$
EXAMPLE 3: If \(g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4 \\ cx + 20 & \text{if } x \geq 4 \end{cases} \) For what value(s) of \(c \) is \(g(x) \) continuous? In order to receive full credit, your answer must be fully supported by the definition of continuity.

EXAMPLE 4: If \(f(x) = \begin{cases} x^2 + c & \text{if } x > 1 \\ 4 & \text{if } x = 1 \\ 4cx + 3 & \text{if } x < 1 \end{cases} \), For what value(s) of \(c \) is \(f(x) \) continuous, if any? In order to receive full credit, your answer must be fully supported by the definition of continuity.

Definition We say \(f(x) \) is continuous from the right at \(x = a \) if \(\lim_{x \to a^+} f(x) = f(a) \). Similarly, we say \(f(x) \) is continuous from the left at \(x = a \) if \(\lim_{x \to a^-} f(x) = f(a) \).
Intermediate Value Theorem If $f(x)$ is continuous on the interval $[a, b]$ and N is any number strictly between $f(a)$ and $f(b)$, then there is a number c, $a < c < b$, so that $f(c) = N$.

EXAMPLE 5: If $g(x) = x^5 - 2x^3 + x^2 + 2$, show there is a number c so that $g(c) = -1$.

EXAMPLE 6: Show there is a root to the equation $x^5 - 2x^4 - x - 3$ on the interval $(2, 3)$.