Section 3.2: Differentiation Formulas

Differentiation Formulas:

(1) Constant rule: If $f(x)=c$, where c is a constant, then $f^{\prime}(x)=0$.
(2) Power rule: If $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$
(3) Constant times a function rule: $\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)$
(4) Sum/Difference rule: If $f(x)=g(x) \pm h(x)$, then $f^{\prime}(x)=g^{\prime}(x) \pm h^{\prime}(x)$
(5) Product rule: If $f(x)=g(x) h(x)$, then $f^{\prime}(x)=g(x) h^{\prime}(x)+g^{\prime}(x) h(x)$
(6) Quotient rule: If $f(x)=\frac{g(x)}{h(x)}$, then $f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{(h(x))^{2}}$

EXAMPLE 1: Find the derivative of the following functions.
(a) $g(x)=x^{5}+8 x^{2}-16 x+2-\pi^{2}$

$$
g^{\prime}(x)=5 x^{4}+16 x-16
$$

(b) $f(t)=(1-\sqrt{t})^{2}=(1-\sqrt{t})(1-\sqrt{t})$

$$
\begin{aligned}
& f(t)=1-2 \sqrt{t}+t=1-2 t^{\frac{1}{2}}+t \\
& f^{\prime}(t)=0-t^{-\frac{1}{2}}+1
\end{aligned}
$$

$$
f^{\prime}(t)=-\frac{1}{\sqrt{t}}+1
$$

(c) $H(s)=\left(\frac{s}{2}\right)^{5}=\frac{1}{32} \mathrm{~s}^{\boldsymbol{5}}$
$H^{\prime}(s)=\frac{5}{32} s^{4}$
(d) $F(x)=\frac{x-3 x \sqrt{x}}{\sqrt{x}}=\frac{\boldsymbol{x}}{\sqrt{\boldsymbol{x}}}-\frac{3 \boldsymbol{x} \sqrt{\boldsymbol{x}}}{\sqrt{\boldsymbol{x}}}$

$$
\frac{x}{\sqrt{x}}=\frac{x^{\prime}}{\pi^{\frac{1}{2}}}=x^{\frac{1}{2}}
$$

$$
\begin{aligned}
& F(x)=x^{\frac{1}{2}}-3 x \\
& F^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}-3=\frac{1}{2 \sqrt{x}}-3
\end{aligned}
$$

(e) $y=\underbrace{\left(x^{3}-x^{2}-2 x+1\right.}_{\mathbf{f}} \underbrace{\left(5 x^{4}-20 x^{3}+5 x+3\right)}_{\mathbf{9}}$

$$
\begin{gathered}
y^{\prime}=f g^{\prime}+f^{\prime} g \\
y^{\prime}=\underbrace{\left(x^{3}-x^{2}-2 x+1\right)}_{f} \underbrace{\left(20 x^{3}-60 x^{2}+5\right)}_{g^{\prime}}+\underbrace{\left(3 x^{2}-2 x-2\right)}_{f^{\prime}}\left(5 x^{4}-20 x^{3}+5 x+3\right)
\end{gathered}
$$

(f) $f(u)=\frac{1-u^{2}}{1+u^{2}} \frac{g}{\mathrm{~h}}$

$$
f^{\prime}(u)=\frac{g^{2} h-g h^{\prime}}{h^{2}}=\frac{\overbrace{(-2 u)}^{g} \overbrace{\left(1+u^{2}\right)}^{h}-\overbrace{\left(1-u^{2}\right)(2 u)}^{g} \overbrace{}^{\prime}}{\left(1+u^{2}\right)^{2}}
$$

EXAMPLE 2: If $f(5)=1, f^{\prime}(5)=6, g(5)=-3$ and $g^{\prime}(5)=2$, find the value of $(f g)^{\prime}(5)$.

$$
\begin{aligned}
(f g)^{\prime}(5) & =f(5) g^{\prime}(5)+f^{\prime}(5) g(5) \\
& =(1)(2)+(6)(-3) \\
& =2-18=-16
\end{aligned}
$$

EXAMPLE 3: Find the equation of the tangent line to the graph of $f(x)=x+\sqrt{x}$ at the point $(1,2)$ point

$$
m=f^{\prime}(1)
$$

$$
m=1+\frac{1}{2 \sqrt{1}}=1+\frac{1}{2}=\frac{3}{2} \leftarrow m
$$

$$
\begin{aligned}
& f(x)=x+x^{\frac{1}{2}} \\
& f^{\prime}(x)=1+\frac{1}{2} x^{-\frac{1}{2}} \\
& f^{\prime}(x)=1+\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
y-2=\frac{3}{2}(x-1)
$$

$$
f(x)=x \sqrt{x}
$$

EXAMPLE 4: At what point on the curve $y=x \sqrt{x}$ is the tangent line parallel to the line $3 x-y+6=0$?
(1) Find the slope of $3 x-y+6=0$ (2) Find the value

$$
\begin{aligned}
& \text { Find the slope of } \begin{array}{r}
3 x-y+6=0 \\
y=3 x+6 \\
m=3 \\
y^{\prime}(x)=3 \rightarrow \frac{3}{2} \sqrt{x}=3 \\
f^{\prime} \\
f^{\prime}(x)=3
\end{array} \\
& f(x)=x \sqrt{x}=x^{\frac{3}{2}} \\
& f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}=\frac{3}{2} \sqrt{x} \\
& \sqrt{x}=2
\end{aligned}
$$

EXAMPLE 5: Show there are two tangent lines to the parabola $y=x^{2}$ that pass through the point $(0,-4)$. Find the equation of these tangent lines.

equate

$$
2 a=\frac{a^{2}+4}{a}
$$

$$
2 a^{2}=a^{2}+4
$$

$$
a^{2}=4 \rightarrow a= \pm 2
$$

(1) line is tangent to the parabola at $x=a$.

$$
\begin{aligned}
& m=f^{\prime}(a) \\
& m=2 a
\end{aligned}
$$

(2) line passes thru $\left(a, a^{2}\right)$ and $(0,-4)$

Find the equations of $2^{\text {the }}$ two tangent lines. $f(x)=x^{2} \quad f^{\prime}(x)=2 x$ point $(2,4) \quad m=4 \quad y-4=4(x-2)$
point $(-2,4) m=-4 \quad y-4=-4(x+2)$
(ii) Sketch the graph of $f(x)$ and $f^{\prime}(x)$ on the same axis.

EXAMPLE 7: If $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq 2 \\ m x+b & \text { if } x>2\end{array}\right.$, find the value of m and b that make $f(x)$ differentiable everywhere.
(1) $f(x)$ must be continuous at $x=2$.

$$
\begin{array}{ll}
\lim _{x \rightarrow 2^{+}} f(x)=2 m+b \\
\lim _{x \rightarrow 2^{-}} f(x)=4 & \text { equate th } \\
\text { also } f(2) & 2 m+b=4
\end{array}
$$

(2) $f(x)$ must be differentiable at $x=2$.

$$
\begin{aligned}
&x) \text { must be differentiable } \\
& \lim _{x \rightarrow 2^{+}} f^{\prime}(x)=\lim _{x \rightarrow 2^{-}} f^{\prime}(x) \\
& \downarrow f^{\prime}(x)
\end{aligned}=\left\{\begin{array}{ll}
2 x & \text { if } x \leqslant 2 \\
m & \text { if } x>2
\end{array}\right] \begin{aligned}
m & =4 \\
2(4)+b & =4 \\
b & =-4
\end{aligned}
$$

EXAMPLE 8: If $\overrightarrow{\mathbf{r}}(t)=\left\langle t^{2}+2 t, t^{3}+3 t^{2}\right\rangle$ is the position of a moving object at time t, where the position is measured in feet and the time in seconds, find the velocity and speed at time $t=1$

$$
\begin{aligned}
& v(t)=r^{\prime}(t)=\left\langle 2 t+2,3 t^{2}+6 t\right\rangle \\
& v(1)=r^{\prime}(1)=\langle 4,9\rangle \\
& \text { speed }=|v(1)|=|\langle 4,9\rangle|=\sqrt{16+81} \\
&=\sqrt{97} \frac{f}{\mathrm{~s}}
\end{aligned}
$$

