Section 3.4: Derivatives of Trigonometric Functions
Two special limits:
(1) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(2) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$

EXAMPLE 1: Find the limit:

$$
\text { (i) } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x}{3 x} & =\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
& =\frac{1}{3}(1) \\
& =\frac{1}{3}
\end{aligned}
$$

(ii) $\lim _{x \rightarrow 0} \frac{\sin 9 x}{7 x}=9 \frac{1}{7} \lim _{x \rightarrow 0} \frac{\sin (9 x)}{9 x}$

$$
=\frac{9}{7} \lim _{x \rightarrow 0} \frac{\sin (9 x)}{9 x}=\frac{9}{7}(1)=\frac{9}{7}
$$

(iv) $\lim _{x \rightarrow 0} \frac{\tan ^{2} 4 x}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{\tan 4 x}{x}\right)\left(\frac{\tan 4 x}{x}\right)$
know:

$$
\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x}=1
$$

(v) $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}=\lim _{x \rightarrow 0} \frac{\frac{\cos x-1}{x}}{\frac{\sin x}{x}}=\frac{0}{1}=0$

Derivatives of Trigonometric Functions:
Function

* Derivative
$\left\{\begin{array}{cc}\sin x & \cos x \\ \tan x & -\sin x \\ \sec x & \sec ^{2} x \\ \cot x & -\csc ^{2} x \\ \sec x & -\csc x \cot x\end{array}\right.$

$$
\begin{aligned}
\frac{d}{d x} \tan x & =\frac{d}{d x} \frac{\sin x}{\cos x} \\
& =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2} x}
\end{aligned}
$$

$$
=\frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

EXAMPLE 2: Find the derivative:

$$
\begin{aligned}
\text { (i) } \begin{aligned}
f(x) & =\sec ^{2} x+4 \tan x+x \sqrt{x} \\
& = \\
\begin{aligned}
\text { product } \\
\text { rule }
\end{aligned} & \underbrace{(\sec x)(\sec x)}_{1}+4 \tan x+x^{\frac{3}{2}} \\
& =\underbrace{(\sec x)}_{1}(\underbrace{\sec x \tan x)}_{2}+\underbrace{(\sec x \tan x}_{i})(\underbrace{\sec x)}_{2}+4 \sec ^{2} x+\frac{3}{2} x^{\frac{1}{2}} \\
& =2 \sec ^{2} x \tan x+4 \sec ^{2} x+\frac{3}{2} \sqrt{x}
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& g(t)=\frac{2 \cos t+1}{\cot t+t} \frac{T}{B} \\
& g^{\prime}(t)=\frac{T^{\prime} B-T B^{\prime}}{B^{2}} \\
&=\frac{(-2 \sin t)(\cot (t)+t)-(2 \cos t+1)\left(-\csc ^{2}(t)+1\right)}{(\cot (t)+t)^{2}}
\end{aligned}
$$

EXAMPLE 3: Find the equation of the tangent line to the graph of $f(x)=2 \sin x$ at $x=\frac{\pi}{3}$.

$$
\begin{aligned}
& m=f^{\prime}\left(\frac{\pi}{3}\right) . \\
& m=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1
\end{aligned}
$$

$$
f^{\prime}(x)=2 \cos x
$$

point: $\left(\frac{\pi}{3}, 2 \sin \frac{\pi}{3}\right)=\left(\frac{\pi}{3}, \sqrt{3}\right)$

$$
\begin{array}{rr}
\frac{\sqrt{3}}{2} & y-\sqrt{3}=1\left(x-\frac{\pi}{3}\right) \\
y=x-\frac{\pi}{3}+\sqrt{3}
\end{array}
$$

EXAMPLE 4: For what values) of x does the graph of $f(x)=x+2 \sin x$ have a horizontal tangent?

$$
\begin{aligned}
& \text { horizontal tangent } \rightarrow f^{\prime}(x)=0 \\
& 1+2 \cos x=0 \\
& 2 \cos x=-1 \\
& \text { Q II: } \quad \cos x=-\frac{1}{2} \\
& x=\pi-\frac{\pi}{3} \\
& x=\frac{2 \pi}{3}+\begin{array}{c}
2 n \pi \\
n=\text { integer }
\end{array} \\
& \text { aIT: } \quad \cos x=-\frac{1}{2} \\
& x=\pi+\frac{\pi}{3} \\
& =\frac{4 \pi}{3}+2 n \pi \\
& \cos x=-\frac{1}{2} \\
& \text { III }
\end{aligned}
$$

