Section 3.5: Chain Rule

<u>Chain Rule</u>: We use the chain rule when we are differentiating a function written as a composition of functions, that is f(x) = g(h(x)). Then f'(x) = g'(h(x))h'(x). *EXAMPLE 1:* Find the derivative:

(i) $f(x) = \sin(2x) + \cot(5x^2)$

(ii) $g(t) = \tan(\cos(t))$

(iii) $h(w) = \sec(\cos(\sin(4w^2)))$

<u>Generalized Power Rule:</u> If $f(x) = (g(x))^n$, then $f'(x) = n (g(x))^{n-1} g'(x)$

EXAMPLE 2: Find the derivative:

(i)
$$f(x) = \frac{1}{(x^2 + 5x + 4)^{10}}$$

(ii)
$$g(x) = x^3(\sqrt{x}+5)^3$$

(iii) $f(x) = \sin(3x) + \sin^3(x)$

(iv)
$$h(t) = \sqrt{\cos(\sin^2 t)}$$

(v)
$$g(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

EXAMPLE 3: Find the equation of the tangent line to the graph of $f(x) = 8\sqrt{4+3x}$ at x = 4.

EXAMPLE 4: Suppose $w = u \circ v$ and u(0) = 1, v(0) = 2, u'(0) = 3, u'(2) = 4, v'(0) = 5 and v'(2) = 6. Find w'(0).

EXAMPLE 5: If $F(x) = f(\cos x)$, $G(x) = \cos(f(x))$ and $H(x) = [f(\sin x)]^3$, find F'(x) and G'(x) and H'(x).

EXAMPLE 6: Find all points on the curve $y = \sin(2x) + \cos(2x)$ where the tangent line is horizontal.