Section 3.6: Implicit Differentiation
Why we differentiate Implicitly: Suppose $y=f(x)$. In this case, we say y is an explicit function of x and we can therefore differentiate as usual: $\frac{d y}{d x}=f^{\prime}(x)$. In this section, we investigate how to differentiate if y cannot be written as an explicit function of x, that is y is implicitly defined as a function of x.
EXAMPLE 1: Find $\frac{d y}{d x}$ for the following equations:
(i) $y^{3}=2 x^{2}+y^{4}$
(ii) $2 y^{2}+x y=x^{2}+3$
(iii) $x \sin y+\cos (2 y)=\cos y$
(iv) $\left(x^{2}+y^{2}\right)^{3}=2 y^{4}+6 x^{2}$

EXAMPLE 2: Find the tangent line to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{36}=1$ at the point $(-1,4 \sqrt{2})$.

Definition: We say two curves are orthogonal if their tangent lines are perpendicular at every point of intersection.
EXAMPLE 3: Prove the curves $x^{2}-y^{2}=5$ and $4 x^{2}+9 y^{2}=72$ are orthogonal.

EXAMPLE 4: If $[g(x)]^{2}+12 x=x^{2} g(x)$ and $g(3)=4$, find $g^{\prime}(3)$.

EXAMPLE 5: Regard y as the independent variable and x as the dependent variable, and use implicit differentiation to find $\frac{d x}{d y}$ for the equation $\left(x^{2}+y^{2}\right)^{2}=2 x^{2} y$.

