Section 3.6: Implicit Differentiation
Why we differentiate Implicitly: Suppose $y=f(x)$. In this case, we say y is an explicit function of x and we can therefore differentiate as usual: $\frac{d y}{d x}=f^{\prime}(x)$. In this section, we investigate how to differentiate if y cannot be written as an explicit function of x, that is y is implicitly defined as a function of x.

EXAMPLE 1: Find $\frac{d y}{d x}$ for the following equations:
(i) $y^{3}=2 x^{2}+y^{4}$

$$
3 y^{2} \frac{d y}{d x}=4 x+4 y^{3} \frac{d y}{d x} \rightarrow 3 y^{2} \frac{d y}{d x}-4 y^{3} \frac{d y}{d x}=4 x
$$

(ii) $2 y^{2}+x y=x^{2}+3$

$$
\begin{aligned}
& \frac{d y}{d x}\left(3 y^{2}-4 y^{3}\right)=4 x \\
& \frac{d y}{d x}=\frac{4 x}{3 y^{2}-4 y^{3}}
\end{aligned}
$$

$4 y \frac{d y}{d x}+x \frac{d y}{d x}+(1) y=2 x$

$$
\frac{d y}{d x}(4 y+x)=2 x-y
$$

$$
\frac{d y}{d x}=\frac{2 x-y}{4 y+x}
$$

(iii) $\underline{x \sin y}+\underline{\cos (2 y)}=\underline{\cos y}$
note: $y^{\prime}=\frac{d y}{d x}$
product chain chain rule rule rule

$$
\begin{aligned}
& (x)(\cos y) y^{\prime}+\underbrace{(1) \sin y}_{L}+-\sin (2 y) \cdot 2 y^{\prime}=\underbrace{(-\sin y) y^{\prime}} \\
& y^{\prime}(x \cos y-\sin (2 y) \cdot 2+\sin y)=-\sin y \\
& y^{\prime}=\frac{-\sin y}{x \cos y-2 \sin (2 y)+\sin y}
\end{aligned}
$$

(iv) $\underbrace{\left(x^{2}+y^{2}\right)^{3}}_{\text {chan }}=2 y^{4}+6 x^{2}$

$$
\underbrace{3\left(x^{2}+y^{2}\right)^{2}}\left(2 x+2 y y^{\prime}\right)=8 y^{3} y^{\prime}+12 x
$$

$$
\begin{aligned}
& \underbrace{6 x\left(x^{2}+y^{2}\right)^{2}}_{L}+6 y\left(x^{2}+y^{2}\right)^{2} y^{\prime}=\underbrace{8 y^{3} y^{\prime}}+12 x \\
& y^{\prime}\left(6 y\left(x^{2}+y^{2}\right)^{2}-8 y^{3}\right)=12 x-6 x\left(x^{2}+y^{2}\right)^{2} \\
& y=\frac{12 x-6 x\left(x^{2}+y^{2}\right)^{2}}{6 y\left(x^{2}+y^{2}\right)^{2}-8 y^{3}}
\end{aligned}
$$

EXAMPLE 2: Find the tangent line to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{36}=1$ at the point $(-1,4 \sqrt{2})$.

$$
\begin{array}{cc}
36\left(\frac{x^{2}}{9}+\frac{y^{2}}{36}\right)=(1)(36) \\
4 x^{2}+y^{2}=36 \\
8 x+2 y y^{\prime}=0
\end{array} \quad \begin{array}{ll}
2 y y^{\prime}=-8 x \\
y^{\prime}=\frac{-4 x}{y} & \begin{array}{l}
m=\frac{4}{4 \sqrt{2}} \\
y=-1+ \\
y=4 \sqrt{2} \\
\text { ito } y^{\prime}
\end{array} \\
m=\frac{1}{\sqrt{2}} \quad & y-4 \sqrt{2}=\frac{1}{\sqrt{2}}(x+1)
\end{array}
$$

Definition: We say two curves are orthogonal if their tangent lines are perpendicular at every point of intersection.

EXAMPLE 3: Prove the curves $x^{2}-y^{2}=5$ and $4 x^{2}+9 y^{2}=72$ are orthogonal.
step:

$$
\begin{gathered}
4 x^{2}+9 y^{2}=72 \\
4\left(5+y^{2}\right)+9 y^{2}=72 \\
20+13 y^{2}=72 \\
13 y^{2}=52 \\
x^{2}=5+y^{2}=4 \\
y^{2}=4 \\
\left\{\begin{array}{l}
y=2< \\
y=-2<\begin{array}{l}
x=3 \\
x=3 \\
x=-3
\end{array}
\end{array}\right.
\end{gathered}
$$

Four intersection points:

$$
(3,2),(-3,2)
$$

$$
(3,-2),(-3,-2)
$$

Step 2: Show tangent lies are perpendicular at all four intersection points

Eq1: $x^{2}-y^{2}=5$

$$
2 x-2 y y^{2}=0
$$

$$
2 y y^{\prime}=2 x
$$

$$
\begin{array}{lr}
=5 & 882: 4 x^{2}+9 y^{2}=72 \\
y=0 & 8 x+18 y^{\prime}=0 \\
=\frac{18 y y^{\prime}=-8 x}{y} & y^{2}=\frac{-4 x}{9 y}
\end{array}
$$

$$
y^{\prime}=\frac{x}{y}
$$

plug in $(3,2)$
tangent lines are perpendicular By symmetry, also pert at other three points

EXAMPLE 4: If $[g(x)]^{2}+12 x=x^{2} g(x)$ and $g(3)=4$, find $g^{\prime}(3)$.

$$
\begin{aligned}
& 2 g(x) g^{\prime}(x)+\underbrace{12}=\underbrace{x^{2} g^{\prime}(x)}+2 x g(x) \\
& g^{\prime}(x)\left[2 g(x)-x^{2}\right]=2 x g(x)-12 \\
& g^{\prime}(x)=\frac{2 x g(x)-12}{2 g(x)-x^{2}} \quad g^{\prime}(3)=\frac{2(3) g(3)-12}{2 g(3)-3^{2}} \\
& \\
& =\frac{12}{8-9}=-12
\end{aligned}
$$

EXAMPLE 5: Regard y as the independent variable and x as the dependent variable, and use implicit differentiation to find $\frac{d x}{d y}$ for the equation $\xlongequal{\left(x^{2}+y^{2}\right)^{2}}=\xlongequal{2 x^{2} y}=$

$$
\begin{aligned}
& \underbrace{2\left(x^{2}+y^{2}\right)}\left(2 x \frac{d x}{d y}+2 y\right)=2 x^{2}+4 x y \frac{d x}{d y} \\
& 4 x\left(x^{2}+y^{2}\right) \frac{d x}{d y}+\underbrace{4 y\left(x^{2}+y^{2}\right)}_{\hookrightarrow}=2 x^{2}+\underbrace{4 x y} \frac{d x}{d y} \\
& \frac{d x}{d y}\left(4 x\left(x^{2}+y^{2}\right)-4 x y\right)=2 x^{2}-4 y\left(x^{2}+y^{2}\right) \\
& \frac{d x}{d y}=\frac{2 x^{2}-4 y\left(x^{2}+y^{2}\right)}{4 x\left(x^{2}+y^{2}\right)-4 x y}
\end{aligned}
$$

