Section 3.7: Derivatives of Vector Functions

Sketching Vector Curves: We can sketch a vector curve by finding parametric equations, then eliminating the parameter to obtain a cartesian equation. We can determine the direction of the curve by finding the direction of a tangent vector. EXAMPLE 1: Sketch the following vector equations. Include the direction of the curve:
(i) $\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle$
(ii) $\mathbf{r}(t)=\langle 2 \cos t, 3 \sin t\rangle$

EXAMPLE 2: If $\mathbf{r}(t)=\left\langle t^{2}-4, \sqrt{9-t}\right\rangle$, find the domain of $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$.

EXAMPLE 3: $\mathbf{r}(t)=\left\langle t, 25 t-5 t^{2}\right\rangle$ is the position of a moving object at time t, where position is measured in feet and time in seconds.
(i) Find the velocity and speed at time $t=1$.
(ii) With what speed does the object strike the ground?

EXAMPLE 4: Find a tangent vector of unit length at $t=1$ to the curve given by $\mathbf{r}(t)=\left\langle t^{2}, 3 t^{3}\right\rangle$.

EXAMPLE 5: Find the angle of intersection of the curves $\mathbf{r}(t)=\left\langle 1-t, 3+t^{2}\right\rangle$ and $\mathbf{s}(u)=\left\langle u-2, u^{2}\right\rangle$.

