Section 3.7: Derivatives of Vector Functions
Sketching Vector Curves: We can sketch a vector curve by finding parametric equations, then eliminating the parameter to obtain a cartesian equation. We can determine the direction of the curve by finding the direction of a tangent vector.

EXAMPLE 1: Sketch the following vector equations. Include the direction of the curve:

$$
\text { (i) } \begin{aligned}
\mathrm{r}(t) & =\left\langle t, t^{2}\right\rangle \\
x & =t \\
y & =t^{2} \\
y & =x^{2}
\end{aligned}
$$

Tangent vector
gives the direction of the curve.

$$
\begin{aligned}
& r(t)=\left\langle t, t^{2}\right\rangle \quad t=2 \\
& r^{\prime}(t)=\langle 1,2 t\rangle \quad r^{\prime}(2)=\langle 1,4\rangle
\end{aligned}
$$

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

counterclockwise direction

$$
\begin{aligned}
& r^{\prime}(t)=\langle-2 \sin t, 3 \cos t\rangle \quad r^{\prime}(0)=\langle 0,3\rangle \\
&(9-t)^{\frac{1}{2}}
\end{aligned}
$$

EXAMPLE 2: If $\mathbf{r}(t)=\left\langle t^{2}-4, \sqrt{9-t}\right\rangle$, find the domain of $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { roman } \\
\text { restriction }
\end{array} \\
& r^{\prime}(t)=\left\langle 2 t, \frac{1}{2}(9-t)^{-\frac{1}{2}}(-1)\right\rangle \\
&=\left\langle 2 t, \frac{-1}{2 \sqrt{9-t}}\right\rangle \text { doman } \overline{r(t)}: t \leq 9
\end{aligned}
$$

EXAMPLE 3: $\mathbf{r}(t)=\left\langle t, 25 t-5 t^{2}\right\rangle$ is the position of a moving object at time t, where position is measured in feet and time in seconds.
(i) Find the velocity and speed at time $t=1$.

$$
\begin{aligned}
& v(t)=r^{\prime}(t)=\langle 1,25-10 t\rangle \\
& v(1)=\langle 1,15\rangle \quad \text { speed }=|\langle 1,15\rangle|=\sqrt{1+(15)^{2}}=\sqrt{226} \frac{f}{s}
\end{aligned}
$$

(ii) With what speed does the object strike the ground?
hits around when $y_{r}=0$

$$
25 t-5 t^{2}=0 \quad t=0
$$

$$
\begin{aligned}
5 t(5-t) & =0 \quad t=5 \\
\langle 1,-25\rangle \mid & =\sqrt{626} \frac{f}{s}
\end{aligned}
$$

EXAMPLE 4: Find a tangent of length at $t=1$ to the curve given by $\mathbf{r}(t)=\left\langle t^{2}, 3 t^{3}\right\rangle$.

EXAMPLE 5: Find the angle of intersection of the curves $\mathbf{r}(t)=\left\langle 1-t, 3+t^{2}\right\rangle$ and $\mathbf{s}(u)=\left\langle u-2, u^{2}\right\rangle$.

Def: The angle of intersection ${ }^{\wedge}$ is the angle between the tangent vectors at the point of intersection.
(1) Find intersection: $1-t=u-2 \rightarrow u=3-t$
point of
inter section $=(0,4)$

$$
\begin{aligned}
& 1-t=u-2 \rightarrow u=3-t \\
& 3+t^{2}=u^{2} \\
& 3+t^{2}=(3-t)^{2} \\
& 3+t^{2}=9-6 t+t^{2} \\
& \quad 6 t=6 \rightarrow \begin{array}{l}
t=1 \\
u=2
\end{array}
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
r(t)=\left\langle 1-t, 3+t^{2}\right\rangle & r^{\prime}(t)=\langle-1,2 t\rangle
\end{array} \quad r^{\prime}(1)=\langle-1,2\rangle\right) \quad s^{\prime}(u)=\langle 1,2 u\rangle \quad s^{\prime}(2)=\langle 1,4\rangle\right)
$$

