Section 3.8: Higher Derivatives
Defintion: If $y=f(x)$, then the second derivative of $f(x)$ is the derivative of the first derivative. We denote the second derivative as $y^{\prime \prime}=\left(f^{\prime}(x)\right)^{\prime}=f^{\prime \prime}(x)$. Similarly, the third derivative is the derivative of the second derivative, denoted by $f^{\prime \prime \prime}(x)$. In general, the $n^{\text {th }}$ derivative of $f(x)$ is denoted by $f^{(n)}(x)$.
EXAMPLE 1: Find the second derivative of $f(\theta)=\theta \sin (\theta)$.

EXAMPLE 2: Find the $f^{(81)}(x)$ for $f(x)=\cos (10 x)$.

EXAMPLE 3: Find a general formula for the $n^{\text {th }}$ derivative for $f(x)=\frac{1}{x}$.

EXAMPLE 4: If $s(t)=2 t^{3}-7 t^{2}+4 t+1$ is the position of a moving object at time t, where $s(t)$ is measured in feet and t is measured in seconds, find:
(i) The velocity at time t.
(ii) The acceleration at the times when the velocity is zero.

EXAMPLE 5: If $\mathbf{r}(t)=\left\langle\frac{t}{2}, t^{2}\right\rangle$:
(i) Sketch the curve.
(ii) Plot the position, tangent and acceleration vectors at at the point corresponding to $t=2$.

EXAMPLE 6: Find $f^{\prime \prime}(x)$ if $f(x)=g\left(x^{3}\right)+(g(x))^{3}$.

EXAMPLE 7: Find $y^{\prime \prime}$ by implicit differentiation for the equation $x^{2}+6 x y^{2}=8$.

