Section 3.8: Higher Derivatives
Defintion: If $y=f(x)$, then the second derivative of $f(x)$ is the derivative of the first derivative. We denote the second derivative as $y^{\prime \prime}=\left(f^{\prime}(x)\right)^{\prime}=f^{\prime \prime}(x)$. Similarly, the third derivative is the derivative of the second derivative, denoted by $f^{\prime \prime \prime}(x)$. In general, the $n^{\text {th }}$ derivative of $f(x)$ is denoted by $f^{(n)}(x)$.

EXAMPLE 1: Find the second derivative of $f(\theta)=\theta \sin (\theta)$.

$$
\begin{aligned}
& f^{\prime}(\theta)=\theta \cos (\theta)+\sin \theta \\
& f^{\prime \prime}(\theta)=\theta(-\sin \theta)+\cos \theta+\cos \theta \\
& f^{\prime \prime}(\theta)=-\theta \sin \theta+2 \cos \theta
\end{aligned}
$$

EXAMPLE 2: Find the $f^{(81)}(x)$ for $f(x)=\cos (10 x)$.

$$
\begin{aligned}
& f^{\prime}(x)=-\sin (10 x)(10) \\
& f^{\prime \prime}(x)=-\cos (10 x)\left(10^{2}\right) \\
& f^{m \prime \prime}(x)=\sin (10 x)\left(10^{3}\right) \\
& f^{4}(x)=\cos (10 x)\left(10^{4}\right) \\
& f^{80}(x)=\cos (10 x)\left(10^{80}\right) \\
& f^{81}(x)=-\sin (10 x)\left(10^{81}\right)
\end{aligned}
$$

EXAMPLE 3: Find a general formula for the $n^{\text {th }}$ derivative for $f(x)=\frac{1}{x}$.

$$
\begin{array}{ll}
f=\frac{1}{x}=x^{-1} & f(n) \\
f^{\prime}=-x^{-2} & f^{n} n!x^{-(n} \\
f^{\prime \prime}=\underbrace{-3} x^{-3} & f^{(n)}=\frac{(-1)^{n} n!}{x^{n+1}} \\
f^{\prime \prime \prime}=\underbrace{-3 \cdot 2}_{3!} x^{-5} & \\
f^{4}=\underbrace{4 \cdot 3 \cdot 2 x}_{4!}
\end{array}
$$

EXAMPLE 4: If $s(t)=2 t^{3}-7 t^{2}+4 t+1$ is the position of a moving object at time t, where $s(t)$ is measured in feet and t is measured in seconds, find:
(i) The velocity at time t.

$$
\begin{aligned}
v(t)=s^{\prime}(t) & =6 t^{2}-14 t+4 \\
& =2\left(3 t^{2}-7 t+2\right) \\
& =2(3 t-1)(t-2)
\end{aligned}
$$

$$
v(t)=0
$$

$$
t=\frac{1}{3}, \quad t=2
$$

(ii) The acceleration at the times when the velocity is zero.

$$
\begin{aligned}
a(t)=r^{\prime}(t) & =s^{\prime \prime}(t) \\
a(t) & =12 t-14 \\
t=\frac{1}{3}: a\left(\frac{1}{3}\right) & =12\left(\frac{1}{3}\right)-14=-10 \frac{f}{s^{2}} \\
t=2: \quad a(2) & =12(2)-14=10 \frac{\mathrm{f}}{\mathrm{~s}^{2}}
\end{aligned}
$$

EXAMPLE 5: If $\mathbf{r}(t)=\left\langle\frac{t}{2}, t^{2}\right\rangle$:
(i) Sketch the curve.

$$
\begin{aligned}
& x=\frac{t}{2} \rightarrow t=2 x \\
& y=t \quad y=4 x^{2}
\end{aligned}
$$

(ii) Plot the position, tangent and acceleration vectors at at the point corresponging to $t=2 . r \quad r^{\prime} \quad r^{\prime}$

$$
\begin{aligned}
& r(t)=\left\langle\frac{t}{2}, t^{2}\right\rangle \rightarrow r(2)=\langle 1,4\rangle \text { (drawn in red) } \\
& r^{\prime}(t)=\left\langle\frac{1}{2}, 2 t\right\rangle \rightarrow r^{\prime}(2)=\left\langle\frac{1}{2}, 4\right\rangle \text { (drawn in blue) } \\
& r^{\prime \prime}(t)=\langle 0,2\rangle \rightarrow r^{\prime \prime}(2)=\langle 0,2\rangle \text { (drawn in black) }
\end{aligned}
$$

EXAMPLE 6: Find $f^{\prime \prime}(x)$ if $f(x)=g\left(x^{3}\right)+(g(x))^{3}$.

$$
\begin{gathered}
f^{\prime}(x)=\underbrace{g^{\prime}\left(x^{3}\right)}_{u} \cdot \underbrace{3 x^{2}}_{w}+\underbrace{3(g(x))^{2}}_{u^{\prime}} \underbrace{g^{\prime}(x)}_{z} \\
f^{\prime \prime}(x)=\underbrace{g^{\prime}\left(x^{3}\right)}_{u} \cdot \underbrace{6 x}_{u^{\prime}}+\underbrace{g^{\prime \prime}\left(x^{3}\right) \cdot 3 x^{2}}_{w} \cdot \underbrace{3 x^{2}}_{y}+\underbrace{3(g(x))^{\prime \prime}}_{z^{\prime}} \underbrace{l}_{y^{\prime}(x)}+\underbrace{\left.\frac{6 g(x)}{\prime}\right) g^{\prime}(x)}_{z} \cdot \underbrace{g^{\prime}(x)}_{z}
\end{gathered}
$$

EXAMPLE 7: Find $y^{\prime \prime}$ by implicit differentiation for the equation $x^{2}+\frac{6 x y^{2}}{乙_{\text {product }}}=8$ rule

$$
\begin{gathered}
2 x+(6 x)\left(2 y y^{\prime}\right)+(6) y^{2}=0 \\
12 x y y^{\prime}=-2 x-6 y^{2} \\
y^{\prime}=\frac{-2 x-6 y^{2}}{12 x y} \\
y^{\prime}=\frac{-x-3 y^{2}}{6 x y} \frac{T}{B} \\
y^{\prime \prime}=\frac{T^{\prime} B-T B^{\prime}}{B^{2}} \sqrt{36 x^{2} y^{2}}
\end{gathered}
$$

