Section 3.9: Slopes and Tangents to Parametric Curves
Derivatives of Parametric Curves: If $x=f(t)$ and $y=g(t)$, then $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$. This gives us a way to find the slope of the tangent line to the parametric curve at $t=t_{0}: m=\left.\frac{d y}{d x}\right|_{t=t_{0}}$.

EXAMPLE 1: Find $\frac{d y}{d x}$ if $x=(3 t-1)^{2}$ and $y=t \sqrt{t}=t^{\frac{3}{2}}$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\frac{3}{2} t^{\frac{1}{2}}}{2(3 t-1)^{\prime}(3)} \quad \frac{d y}{d x}=\frac{\sqrt{t}}{4(3 t-1)}
$$

EXAMPLE 2: If $x=1-t^{3}$ and $y=t^{2}-3 t+1$, find an equation of the tangent line corresponding to $t=2$.

$$
\begin{array}{ll}
m=\left.\frac{d y / d t}{d x / d t}\right|_{t=2} & t=2\left\langle\begin{array}{l}
x=1-t^{3} \rightarrow x=-7 \\
y=t^{2}-3 t+1 \rightarrow y=-1
\end{array}\right. \\
m=\left.\frac{2 t-3}{-3 t^{2}}\right|_{t=2} & y-\frac{1}{12}
\end{array}
$$

EXAMPLE 3. If $x=2 t+3$ and $y=t^{2}+2 t$, find the equation of the tangent line at the point $(5,3)$.

$$
\begin{aligned}
& m=\left.\frac{d y / d t}{d x / d t}\right|_{\mid=1} ^{t=1} \\
& \begin{array}{ll}
t=1 \\
\text { yield the } \\
\text { pout }(5,3)
\end{array} m=\left.\frac{2 t+2}{2}\right|_{t=1} \\
& m=2
\end{aligned}
$$

EXAMPLE 4: If $x=t^{3}-3 t^{2}$ and $y=t^{3}-3 t$, find all points on the curve where the
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \quad \stackrel{d y}{d x}=\frac{3(t+1)(t-1)}{3 t(t-2)}$
$\frac{d y}{d x}=\frac{3 t^{2}-3}{3 t^{2}-6 t}$ horizontal tangent: $m=0 \rightarrow \frac{d y}{d t}=0$

(2) vertical tangents: undefined slope $3(t+1)(t-1)=0$
$\frac{d x}{d t}=0 \rightarrow 3 t(t-2)=0$
$t 0<_{y=0}^{x=0}$
vertical tangents
occur at $(0,0) *(-4,2) \quad t=2<$
$y=-4$

EXAMPLE 5: Show the curve $x=\cos t$ and $y=(\sin t)(\cos t)$ has two tangents at

$$
=\frac{-1}{1}=-1 \quad \begin{aligned}
& m=-1 \\
& \\
& \text { pout }(0,0)
\end{aligned} \quad y=-x
$$

EXAMPLE 6: At what points on the curve $x=t^{3}+4 t, y=6 t^{2}$ is the tangent line parallel to the line with equations $x=-7 t, y=12 t-5 ? \leftarrow$

