Section 4.1: Exponential Functions and their derivatives

Definition: The function $f(x) = a^x$, $a \neq 1$, a > 0, is called an exponential function.

• Case 1: Exponential Growth If a > 1, then $f(x) = a^x$ grows exponentially.

Note in particular:

- (i) The domain is $(-\infty, \infty)$. (ii) The range is $(0, \infty)$. (iii) $\lim_{x \to \infty} a^x = \infty$. (iv) $\lim_{x \to -\infty} a^x = 0$.
- Case 2: Exponential Decay If 0 < a < 1, then $f(x) = a^x$ decays exponentially.

Note in particular:

- (i) The domain is $(-\infty, \infty)$.
- (ii) The range is $(0, \infty)$.
- (iii) $\lim_{x \to \infty} a^x = 0.$
- (iv) $\lim_{x \to -\infty} a^x = \infty.$

Properties of Exponential Functions:

(i)
$$a^{x+y} = a^x a^y$$

(ii) $a^{x-y} = \frac{a^x}{a^y}$
(iii) $(a^x)^y = a^{xy}$
(iv) $(ab)^x = a^x b^x$
(v) $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$

-2

EXAMPLE 1: Sketch the graph of $f(x) = 2^x$ and $g(x) = 3^x$ on the same axis.

Definition: We call $f(x) = e^x$ the exponential function, where $e \approx 2.718281828$. One interesting fact about $f(x) = e^x$ is that it is the only exponential function where the slope of the tangent line at x = 0 is 1.

EXAMPLE 2: Find the limit: (a) $\lim_{x\to\infty} 0.3^{-x}$

(b)
$$\lim_{x \to -\infty} \left(\frac{e}{\pi}\right)^x$$

(c)
$$\lim_{x \to 2^+} \left(\frac{1}{4}\right)^{\frac{x}{2-x}}$$

(d)
$$\lim_{x \to 2^-} \left(\frac{1}{4}\right)^{\frac{x}{2-x}}$$

(d)
$$\lim_{x \to -\infty} \frac{4}{1 + e^x}$$

(e)
$$\lim_{x \to \infty} \frac{e^x - e^{-3x}}{e^{3x} + e^{-3x}}$$

Derivatives of Exponential Functions

(i)
$$\frac{d}{dx}e^x = e^x$$

(ii) $\frac{d}{dx}e^{g(x)} = g'(x)e^{g(x)}$

EXAMPLE 3: Find the derivative.

(a)
$$y = \sqrt{e^x + x} + \frac{1}{e} + x^e$$

(b)
$$f(x) = e^{-5x} \cos(3x)$$

(c)
$$f(x) = e^{x \sin x}$$

EXAMPLE 4: Find the equation of the tangent line to the graph of $2e^{xy} = x + y$ at the point (0, 2).

EXAMPLE 5: Find the 800th derivative of $f(x) = xe^x$

EXAMPLE 6: Find the equation of the tangent line to the parametric curve $x = e^{-t}$, $y = te^{2t}$ at t = 0.

EXAMPLE 7: Find the derivative of $f(x) = g(e^x) + e^{g(\sin x)}$.