Section 4.1: Exponential Functions and their derivatives
Definition: The function $f(x)=a^{x}, a \neq 1, a>0$, is called an exponential function.

- Case 1: Exponential Growth If $a>1$, then $f(x)=a^{x}$ grows exponentially.

Note in particular:
(i) The domain is $(-\infty, \infty)$.
(ii) The range is $(0, \infty)$.
(iii) $\lim _{x \rightarrow \infty} a^{x}=\infty$.
(iv) $\lim _{x \rightarrow-\infty} a^{x}=0$.

- Case 2: Exponential Decay If $0<a<1$, then $f(x)=a^{x}$ decays exponentially.

Note in particular:
(i) The domain is $(-\infty, \infty)$.
(ii) The range is $(0, \infty)$.
(iii) $\lim _{x \rightarrow \infty} a^{x}=0$.
(iv) $\lim _{x \rightarrow-\infty} a^{x}=\infty$.

Properties of Exponential Functions:

(i) $a^{x+y}=a^{x} a^{y}$
(ii) $a^{x-y}=\frac{a^{x}}{a^{y}}$
(iii) $\left(a^{x}\right)^{y}=a^{x y}$
(iv) $(a b)^{x}=a^{x} b^{x}$
(v) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

EXAMPLE 1: Sketch the graph of $f(x)=2^{x}$ and $g(x)=3^{x}$ on the same axis.

Definition: We call $f(x)=e^{x}$ the exponential function, where $e \approx 2.718281828$. One interesting fact about $f(x)=e^{x}$ is that it is the only exponential funtion where the slope of the tangent line at $x=0$ is 1 .

EXAMPLE 2: Find the limit:
(a) $\lim _{x \rightarrow \infty} 0.3^{-x}$
(b) $\lim _{x \rightarrow-\infty}\left(\frac{e}{\pi}\right)^{x}$
(c) $\lim _{x \rightarrow 2^{+}}\left(\frac{1}{4}\right)^{\frac{x}{2-x}}$
(d) $\lim _{x \rightarrow 2^{-}}\left(\frac{1}{4}\right)^{\frac{x}{2-x}}$
(d) $\lim _{x \rightarrow-\infty} \frac{4}{1+e^{x}}$
(e) $\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}$

Derivatives of Exponential Functions

(i) $\frac{d}{d x} e^{x}=e^{x}$
(ii) $\frac{d}{d x} e^{g(x)}=g^{\prime}(x) e^{g(x)}$

EXAMPLE 3: Find the derivative.
(a) $y=\sqrt{e^{x}+x}+\frac{1}{e}+x^{e}$
(b) $f(x)=e^{-5 x} \cos (3 x)$
(c) $f(x)=e^{x \sin x}$

EXAMPLE 4: Find the equation of the tangent line to the graph of $2 e^{x y}=x+y$ at the point $(0,2)$.

EXAMPLE 5: Find the 800th derivative of $f(x)=x e^{x}$

EXAMPLE 6: Find the equation of the tangent line to the parametric curve $x=e^{-t}$, $y=t e^{2 t}$ at $t=0$.

EXAMPLE 7: Find the derivative of $f(x)=g\left(e^{x}\right)+e^{g(\sin x)}$.

