Section 4.2: Inverse Functions

Definition: We say f(x) is one-to-one provided whenever $f(x_1) = f(x_2)$, $x_1 = x_2$. *EXAMPLE 1*: Prove $f(x) = x^2 - 2x + 5$ is not one-to-one.

EXAMPLE 2: Prove $f(x) = 5 - 4x^3$ is one-to-one.

EXAMPLE 3: Prove $f(x) = \frac{x-2}{x+2}$ is one-to-one.

Definition: Let f(x) be a one-to-one function with domain D and range R. Then the inverse exists, denoted by $f^{-1}(x)$. Furthermore, the domain of f^{-1} = range of f = R and the range of f^{-1} = domain of f = D. Moreover,

$$f(x) = y \iff f^{-1}(y) = x$$

EXAMPLE 4: Given the graph of f below, sketch the graph of f^{-1} .

EXAMPLE 5: Find the inverse.

(a)
$$f(x) = 5 - 4x^3$$

(b)
$$f(x) = \sqrt{4 - 2x}$$

(c)
$$f(x) = \frac{2x+1}{1-3x}$$

<u>**Theorem</u></u>: Suppose f is a one-to-one differentiable function with inverse function g = f^{-1}. Then g is differentiable and g'(a) = \frac{1}{f'(g(a))}.** *EXAMPLE 6***: Suppose g is the inverse of f and f(2) = 3, f'(2) = 7, f(3) = 4 and</u>**

EXAMPLE 6: Suppose g is the inverse of f and f(2) = 3, f'(2) = 7, f(3) = 4 and $f'(3) = \frac{1}{2}$. Find g'(3).

EXAMPLE 7: Suppose g is the inverse of f. Find g'(4) if $f(x) = 3 + x + e^x$.

EXAMPLE 8: Suppose g is the inverse of f. Find g'(2) if $f(x) = \sqrt{x^3 + x^2 + x + 1}$.