Section 4.2: Inverse Functions

Definition: We say $f(x)$ is one-to-one provided whenever $f\left(x_{1}\right)=f\left(x_{2}\right), x_{1}=x_{2}$. EXAMPLE 1: Prove $f(x)=x^{2}-2 x+5$ is not one-to-one.

EXAMPLE 2: Prove $f(x)=5-4 x^{3}$ is one-to-one.

EXAMPLE 3: Prove $f(x)=\frac{x-2}{x+2}$ is one-to-one.

Definition: Let $f(x)$ be a one-to-one function with domain D and range R. Then the inverse exists, denoted by $f^{-1}(x)$. Furthermore, the domain of $f^{-1}=$ range of $f=R$ and the range of $f^{-1}=$ domain of $f=D$. Moreover,

$$
f(x)=y \Longleftrightarrow f^{-1}(y)=x
$$

EXAMPLE 4: Given the graph of f below, sketch the graph of f^{-1}.

EXAMPLE 5: Find the inverse.
(a) $f(x)=5-4 x^{3}$
(b) $f(x)=\sqrt{4-2 x}$
(c) $f(x)=\frac{2 x+1}{1-3 x}$

Theorem: Suppose f is a one-to-one differentiable function with inverse function $g=f^{-1}$. Then g is differentiable and $g^{\prime}(a)=\frac{1}{f^{\prime}(g(a))}$.
EXAMPLE 6: Suppose g is the inverse of f and $f(2)=3, f^{\prime}(2)=7, f(3)=4$ and $f^{\prime}(3)=\frac{1}{2}$. Find $g^{\prime}(3)$.

EXAMPLE 7: Suppose g is the inverse of f. Find $g^{\prime}(4)$ if $f(x)=3+x+e^{x}$.

EXAMPLE 8: Suppose g is the inverse of f. Find $g^{\prime}(2)$ if $f(x)=\sqrt{x^{3}+x^{2}+x+1}$.

