Section 4.3: Logarithmic Functions
Definition: If $a>0$ and $a \neq 1, f(x)=a^{x}$ is a one to one function, hence has an inverse, called the logarithm with base a. More specifically, If $a^{x}=y$, then $\log _{a} y=x$. Note in particular, since $\log _{a} x$ and a^{x} are inverses of each other, it follows that $\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x$.
EXAMPLE 1: Evaluate the following:
(a) $\log _{2} 8$
(b) $\log _{3} \frac{1}{81}$
(c) $\log _{16} 4$

EXAMPLE 2: Sketch the graph of $f(x)=\log _{4} x$. What is the domain and range?

Definition: We define the natural logarithm to be $\log _{e} x$ denoted by $\ln x$. We define the common logarithm to be $\log _{10} x$, dentoed by $\log x$.
EXAMPLE 3: Evaluate the following:
(a) $\log \frac{1}{100}$
(b) $\ln \sqrt{e}$

EXAMPLE 4: Solve for x :
(a) $2 \log (x+1)=3$
(b) $e^{3-x}+8=14$
(c) $4^{\log _{4} 3}+\ln (4 x-2)=15$

EXAMPLE 5: Find the domain of $f(x)=\log \left(x^{2}-3 x+2\right)$.

EXAMPLE 6: Find the limit:
(a) $\lim _{x \rightarrow \infty} \ln \left(x^{2}-x\right)$
(b) $\lim _{x \rightarrow 9^{+}} \log _{2}(x-9)$
(c) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \log (\tan x)$
(d) $\lim _{x \rightarrow 0^{+}} \log (\cos x)$

Properties of Logarithms:

- $\log _{a}(M N)=\log _{a} M+\log _{a} N$
- $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$
- $\log _{a} M^{r}=r \log _{a} M$
- $\log _{a} a^{x}=x$
- $a^{\log _{a} x}=x$
- If $\log _{a} M=\log _{a} N$, then $M=N$.

EXAMPLE 7: Write the following as a single logarithm:
$\frac{1}{2} \ln x+b \ln y-c \ln z-\ln \left(x^{2}+1\right)$.

EXAMPLE 8: Solve the following equations for x.
(a) $\ln x-\ln (x-1)=1$
(b) $\log x+\log (x+1)=\log 6$

EXAMPLE 9: Find the limit:
a.) $\lim _{x \rightarrow \infty}\left(\ln \left(3 x^{2}+x\right)-\ln \left(2 x^{2}-x\right)\right)$
b.) $\lim _{x \rightarrow \infty}\left(\ln \left(3 x^{2}+x\right)-\ln \left(2 x^{4}-x\right)\right)$

EXAMPLE 10: Find the inverse of the function:
(a) $f(x)=\ln (x+2)$
(b) $f(x)=\frac{10^{x}}{10^{x}+1}$

EXAMPLE 11: Find the point where the tangent line to the curve $y=e^{-x}$ is perpendicular to the line $2 x-y=8$.

Change of Base formula $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$. Specifically, to change to base e:

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

EXAMPLE 12: Evaluate $\log _{2} 5$ to 4 decimal places.

