Section 4.4: Derivatives of Logarithmic Functions

EXAMPLE 1: Using Implicit Differentiation, prove $\frac{d}{d x} \ln x=\frac{1}{x}$.
Note: The chain rule states $\frac{d}{d x} \ln \left(g(x)=\frac{g^{\prime}(x)}{g(x)}\right.$

EXAMPLE 2: Find the derivative
(a) $f(x)=\cos (\ln x)$
(b) $y=\ln (1+\ln x)$
(c) $f(u)=\ln \sqrt{\frac{3 u+2}{3 u-2}}$

EXAMPLE 3: Using Implicit Differentiation, prove $\frac{d}{d x} a^{x}=(\ln a) a^{x}$.
Note: The chain rule states $\frac{d}{d x} a^{g(x)}=g^{\prime}(x) \ln (a) a^{g(x)}$

EXAMPLE 4: Find the derivative of $f(x)=\tan ^{5} x+5^{\tan x}$

EXAMPLE 5: Using the change of base formula, prove $\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}$ Note: The chain rule states $\frac{d}{d x} \log _{a} g(x)=\frac{g^{\prime}(x)}{g(x) \ln a}$

EXAMPLE 6: Find the derivative of $f(x)=\log _{3}\left(5-x^{4}\right)$.

Logarithmic Differentiation: We use this technique in two situations:
(i) When we are differentiating a function of the form $y=f(x)^{g(x)}$
(ii) When we wish to split a product or quotient, thereby making the derivative easier to compute.
EXAMPLE 7: Find the derivative of
(a) $f(x)=(\sin x)^{\cos x}$
(b) $y=\frac{e^{x}\left(x^{2}+2\right)^{3}}{(x+1)^{4}\left(x^{2}+3\right)^{2}}$

