Section 4.5: Exponential Growth and Decay
Definition: If $y(t)$ is the value of a quantity at time t and if the rate of change of y with respect to t is proportional to its size $y(t)$ at any time, [That is $\frac{d y}{d t}=k y$], then the quantity $y(t)$ at time t is given by

$$
y(t)=y_{0} e^{k t}
$$

where y_{0} is the initial quantity and k is a constant. Given information, your primary goal is to find k.
EXAMPLE 1: A bacteria culture starts with 4000 bacteria and the population triples every half-hour.
(i) Find an expression for the number of bacteria after t hours.
(ii) Find the number of bacteria after 20 minutes.
(iii) Find the rate of growth after 20 minutes.

EXAMPLE 2: Def: The half-life of a substance is the amount of time it takes for half of the substance to disintegrate. Polonium-210 has a half-life of 140 days.
(i) If a sample has a mass of 200 mg , find a formula for the mass that remains after t days.
(ii) When will the mass be reduced to 10 mg ?

EXAMPLE 3: After 3 days a sample of radon-222 decayed to 58% of its original amount. What is the half-life of radon-222? How long will it take the sample to decay to 10% of its original amount?

EXAMPLE 4: A curve passes through the point $(0,7)$ and has the property that the slope of the curve at every point p is half the y-coordinate of p. Find the equation of the curve.

EXAMPLE 5: The rate of change of atmospheric pressure P with respect to altitude h is proportional to P , provided that the temperature is constant. At a specific temperature the pressure is 101 kPa at sea level and 86.9 kPa at $\mathrm{h}=1,000 \mathrm{~m}$. What is the pressure at an altitude of 3500 m ?

Compound Interest: If A_{0} dollars is invested at $r \%$ compounded n times a year, then the amount in the account after t years is given by $A=A_{0}(1+r / n)^{n t}$.
EXAMPLE 6: If $\$ 4000$ is invested at 8% compounded monthly, how much money is in the account at the end of 6 years?

Continuous Compound Interest: If P dollars is invested at $r \%$ compounded continuously, then the amount in the account after t years is given by $A=P e^{r t}$.
EXAMPLE 7: How much money should be invested now at 6% compounded continuously in order to have $\$ 30,00018$ years from now?

Definition: The rate of cooling of an object is proportional to the temperature difference between the object and the temperature of the object's surroundings. If $y(t)$ is the temperature of the object at time t, then $\frac{d y}{d t}=k(y-T)$, where y is the temperature of the object at time t and T is the room temperature (the temperature of the room in which the object is cooling). The solution of this equation, which gives the temperature of the object at time t, is $y(t)=\left(y_{0}-T\right) e^{k t}+T$, where y_{0} is the initial temperature of the object.
EXAMPLE 8: A thermometer is taken from a room where the temperature is $20^{\circ} \mathrm{C}$ to the outdoors, where the temperature is $5^{\circ} \mathrm{C}$. After one minute, the temperature reads $12^{\circ} \mathrm{C}$. Use Newton's Law of Cooling to answer the following questions.
a.) What will the reading of the thermometer be after 2 minutes?
b.) When will the thermemeter read $6^{\circ} \mathrm{C}$?

