Section 4.6: Inverse Trigonometric Functions

I. INVERSE COSINE: If $0 \le x \le \pi$, then $f(x) = \cos x$ is one-to-one, thus the inverse exists, denoted by $\cos^{-1}(x)$ or $\arccos x$. Additionally, the domain of $\arccos x = \operatorname{range} \operatorname{of} \cos x = [-1, 1]$ and $\operatorname{range} \operatorname{of} \arccos x = \operatorname{domain} \operatorname{of} \cos x = [0, \pi]$. Note: $\operatorname{arccos}(x)$ is the **angle** in $[0, \pi]$ whose cosine is x.

Cancellation Equations: Recall $f^{-1}(f(x)) = x$ for x in the domain of f, and $f(f^{-1}(x)) = x$ for x in the domain of f^{-1} . This yields the following cancellation equations:

- $\arccos(\cos x) = x$ if $0 \le x \le \pi$
- $\cos(\arccos x) = x$ if $-1 \le x \le 1$.

Example 1: Compute the following.

(i)
$$\arccos(0)$$

(ii) $\cos^{-1}(1)$

(iii)
$$\operatorname{arccos}(-1)$$
 (iv) $\operatorname{arccos}\frac{1}{2}$

(v)
$$\cos^{-1}\frac{-\sqrt{3}}{2}$$
 (vi) $\sin\left(2\arccos(-\frac{4}{5})\right)$

(vii)
$$\arccos\left(\left(\cos\left(\frac{\pi}{6}\right)\right)\right)$$
 (viii) $\arccos\left(\left(\cos\left(\frac{7\pi}{6}\right)\right)\right)$

(ix)
$$\arccos\left(\left(\cos\left(-\frac{\pi}{3}\right)\right)\right)$$
 (x) $\cos\left(\left(\cos^{-1}(2)\right)\right)$

©Amy Austin, October 31, 2011

II. INVERSE SINE: If $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, then $f(x) = \sin x$ is one-to-one, thus the inverse exists, denoted by $\sin^{-1}(x)$ or $\arcsin x$. Additionally, the domain of $\arcsin x = \operatorname{range} \operatorname{of} \sin x = [-1, 1]$ and range of $\arcsin x = \operatorname{domain} \operatorname{of} \sin x = [-\frac{\pi}{2}, \frac{\pi}{2}]$. Note: $\operatorname{arcsin}(x)$ is the **angle** in $[-\frac{\pi}{2}, \frac{\pi}{2}]$ whose sine is x.

Cancellation Equations: Recall $f^{-1}(f(x)) = x$ for x in the domain of f, and $f(f^{-1}(x)) = x$ for x in the domain of f^{-1} . This yields the following cancellation equations:

- $\arcsin(\sin x) = x$ if $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
- $\sin(\arcsin x) = x$ if $-1 \le x \le 1$.

Example 3: Compute the following. (i) arcsin(0)

(ii) $\sin^{-1}(1)$

(iii)
$$\arcsin(-1)$$
 (iv) $\arcsin\frac{1}{2}$

(v)
$$\sin^{-1}\frac{-\sqrt{3}}{2}$$
 (vi) $\tan\left(\arcsin(\frac{2}{3})\right)$

(vii)
$$\sin\left(\arcsin(\frac{3}{10})\right)$$
 (viii) $\arcsin\left(\left(\sin(\frac{5\pi}{4})\right)\right)$

(ix)
$$\arcsin\left(\left(\sin\left(-\frac{\pi}{6}\right)\right)\right)$$
 (x) $\arcsin\left(\sin\left(\frac{\pi}{120}\right)\right)$

©Amy Austin, October 31, 2011

III. INVERSE TANGENT: If $-\frac{\pi}{2} < x < \frac{\pi}{2}$, then $f(x) = \tan x$ is one-toone, thus the inverse exists, denoted by $\tan^{-1}(x)$ or $\arctan x$. Additionally, the domain of $\arctan x = \operatorname{range}$ of $\tan x = (-\infty, \infty)$ and range of $\arctan x = \operatorname{domain}$ of $\tan x = (-\frac{\pi}{2}, \frac{\pi}{2})$. Note: $\operatorname{arctan}(x)$ is the **angle** in $(-\frac{\pi}{2}, \frac{\pi}{2})$ whose tangent is x.

Cancellation Equations: Recall $f^{-1}(f(x)) = x$ for x in the domain of f, and $f(f^{-1}(x)) = x$ for x in the domain of f^{-1} . This yields the following cancellation equations:

- $\arctan(\tan x) = x$ if $-\frac{\pi}{2} < x < \frac{\pi}{2}$
- $\tan(\arctan x) = x$ for all x.

Example 5: Compute the following.(i) arctan(0)

(ii) $\tan^{-1}(1)$

(iii) $\arctan(-1)$ (iv) $\arctan(-\sqrt{3})$

(v)
$$\tan(\arcsin x)$$
 (vi) $\arctan\left(\tan(\frac{5\pi}{3})\right)$

(vii)
$$\lim_{x \to \infty} \arctan x$$

(viii) $\lim_{x \to -\infty} \arctan x$

Derivatives of Inverse Trigonometric Functions:

A.)
$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}$$
.
B.) $\frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}}$.
C.) $\frac{d}{dx} \arctan x = \frac{1}{1 + x^2}$.

Example 7: Prove formula A.

Example 8: Find the derivative of $f(x) = \arccos(2x - 1)$.

Example 9: Find the derivative of $f(x) = \tan^{-1}(\arcsin x)$.

Example 10: What is the domain of $\arcsin(3x+1)$? Of $\arctan(3x+1)$?

The Unit Circle

