Section 4.8: L'Hospital's Rule

Indeterminate form: If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\frac{\infty}{\infty}$, then we say the limit is in indeterminate form.
L'Hospital's Rule: If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\frac{\infty}{\infty}$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
Some common misconceptions: If If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{\infty}$ or $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\infty}{0}$, the limit is NOT indeterminate! For example,
(i) $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\sqrt{x}}$
(ii) $\lim _{x \rightarrow 0^{+}} \frac{x}{\ln x}$

Example 1: Find the following limits, if they exist. If the limit does not exist, explain why.
(i) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
(iii) $\lim _{x \rightarrow 0} \frac{\sin m x}{\sin n x}$
(iv) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x}$

Indeterminate Products: If $\lim _{x \rightarrow a} f(x) g(x)=0 \cdot \infty$, this limit is an indeterminate product. Why do we call the product indeterminate?

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \cdot x \quad \lim _{x \rightarrow \infty} \frac{1}{x} \cdot x^{2} \quad \lim _{x \rightarrow \infty} \frac{1}{x^{2}} \cdot 6 x^{2}
$$

All three of these limits are of the form $0 \cdot \infty$, yet they all have different limits. The goal is ty try to manipulate the product get the limit in the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then use L'Hospital's rule.
Example 2: Find the following limits, if they exist. If the limit does not exist, explain why.
(i) $\lim _{x \rightarrow 0^{+}} x^{3} \ln x$
(ii) $\lim _{x \rightarrow 1^{+}}(x-1) \tan (\pi x / 2)$

Indeterminate Powers: If $\lim _{x \rightarrow a} f(x)^{g(x)}$ is of the form $0^{0}, \infty^{0}$ or 1^{∞}, then the limit is an indeterminate power. To solve such a limit, take the natural logarithm, which converts the indeterminate power into an indeterminate product.
Example 3: Find the following limits, if they exist. If the limit does not exist, explain why.
(i) $\lim _{x \rightarrow \infty} x^{\frac{3}{x}}$
(ii) $\lim _{x \rightarrow \infty}\left(\frac{2 x-3}{2 x+5}\right)^{2 x+1}$

Indeterminate difference: If $\lim _{x \rightarrow a}(f(x)-g(x))=\infty-\infty$, this limit is an indeterminate difference.
Example 4: Find $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$

