Section 5.1: What does f^{\prime} say about f ?

What does f^{\prime} say about f ?

- If $f^{\prime}>0$ on an interval I, then f is increasing on I.
- If $f^{\prime}<0$ on an interval I, then f is decreasing on I.
- If f^{\prime} goes from positive to negative at $x=a$, and $x=a$ is in the domain of f, then f has a local maximum at $x=a$.
- If f^{\prime} goes from negative to positive at $x=a$, and $x=a$ is in the domain of f, then f has a local minimum at $x=a$.

Illustration:

EXAMPLE 1: Below is the graph of the derivative, f^{\prime}, of some function f. Use it to answer the following questions:

(i) On what intervals is f increasing?
(ii) On what intervals is f decreasing?
(iii) At what x values does f have a local maximum or minimum?

Definition If the slopes of a curve become progressively larger as x increases, then we say f is concave upward. If the slopes of a curve become progressively smaller as x increases, then we say f is concave downward.

Illustration:

What does $f^{\prime \prime}$ say about f ?

- If $f^{\prime \prime}>0$ on an interval I, then f^{\prime} is increasing, hence f is concave up on I.
- If $f^{\prime \prime}<0$ on an interval I, then f^{\prime} is decreasing, hence f is concave down on I.
- If f changes concavity at $x=a$, and $x=a$ is in the domain of f, then $x=a$ is an inflection point of f.

EXAMPLE 2: If $f^{\prime}(4)=0$ and $f^{\prime \prime}(4)=5$, what can be said about f ?

EXAMPLE 3: If $f^{\prime}(x)=e^{-x^{2}}$ what can be said about f ?

EXAMPLE 4: Sketch a graph of f satisfying the following conditions:
(i) $f^{\prime}(x)>0$ on the interval $(-\infty, 1)$ and $f^{\prime}(x)<0$ on the interval $(1, \infty)$.
(ii) $f^{\prime \prime}(x)>0$ on the interval $(-\infty,-2)$ and $(2, \infty)$.
(iii) $f^{\prime \prime}(x)<0$ on the interval $(-2,2)$.
(iv) $\lim _{x \rightarrow-\infty} f(x)=-2$ and $\lim _{x \rightarrow \infty} f(x)=0$.

