Section 5.3: Derivatives and Shapes of Curves
Mean Value Theorem If $f(x)$ is continuous on the interval $[a, b]$ and differentiable on the interval (a, b), then there exists a number c, where $a<c<b$, so that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. Graphically, this means the tangent line to the graph of $f(x)$ at $x=c$ is parallel to the secant line joining the points $(a, f(a))$ and $(b, f(b))$. Illustration:

EXAMPLE 1: Given $f(x)=4-x^{2}$, show $f(x)$ satisfies the mean value theorem on the interval $[1,2]$ and find all c that satisfy the conclusion of the mean value theorem.

First derivative test for increasing/decreasing and local extrema.

- If $f^{\prime}>0$ on an interval I, then f is increasing on I.
- If $f^{\prime}<0$ on an interval I, then f is decreasing on I.
- If f^{\prime} goes from positive to negative at $x=a$, and $x=a$ is in the domain of f, then f has a local maximum at $x=a$.
- If f^{\prime} goes from negative to positive at $x=a$, and $x=a$ is in the domain of f, then f has a local minimum at $x=a$.

EXAMPLE 3: Find all intervals of increase and decrease and identify all local extrema:
(a) $f(x)=x^{4}+4 x^{3}+3$
(b) $f(x)=x \sqrt{x+1}$
(c) $f(x)=x e^{2 x}$

Second derivative test for concavity and inflection points.

- If $f^{\prime \prime}>0$ on an interval I, then f^{\prime} is increasing, hence f is concave up on I.
- If $f^{\prime \prime}<0$ on an interval I, then f^{\prime} is decreasing, hence f is concave down on I.
- If f changes concavity at $x=a$, and $x=a$ is in the domain of f, then $x=a$ is an inflection point of f.

EXAMPLE 4: Find intervals of concavity and inflection points of we are given that $f^{\prime}(x)=4 x^{3}-6 x+6$.

EXAMPLE 6: If $f(x)=\frac{x}{(x-1)^{2}}$, locate intervals of increase/decrease, local extrema, concavity and inflection points.

Note: $f^{\prime}(x)=\frac{-x-1}{(x-1)^{3}}$ and $f^{\prime \prime}(x)=\frac{2 x+4}{(x-1)^{4}}$

EXAMPLE 5: Sketch the graph of $f(x)=x \ln x$ by locating intervals of increase/decrease, local extrema, concavity and inflection points.

Second derivative test for local extrema. If $x=c$ is a critical number for $f(x)$, then:

- If $f^{\prime \prime}(c)>0$, then f is concave up, therefore $f(x)$ has a local minimum at $x=c$.
- If $f^{\prime \prime}(c)<0$, then f is concave down, therefore $f(x)$ has a local maximum at $x=c$.
- If $f^{\prime \prime}(c)=0$ or does not exist, then the test fails, therefore use the first derivative test to find the local extrema.

EXAMPLE 7: Use the second derivative test to find the local extrema for $f(x)=x^{3}-3 x-1$.

